• Title/Summary/Keyword: particle phase

Search Result 1,794, Processing Time 0.023 seconds

Determination and Survey of Fluoroquinolones Residue in Chicken Muscle by HPLC with Fluorescence Detector (액체크로마토그래피-형광검출기를 이용한 닭고기 중 플루오로퀴놀론계 항균물질 정량분석 및 잔류조사)

  • 박은정;임지흔;이성모
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2004
  • Ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin in chicken muscle were seperated by liquid extraction and determined with high performance liquid chromatography (HPLC) with fluorescence detector. Analysis was carried out using following conditions; Cl8 column (250${\times}$4.6 mm i.d. 5 ${\mu}{\textrm}{m}$ particle size), mobile phase composed of D.W. (containing 0.4% triethylamine and phospholic acid): methanol : acetonitrile (800:100:100, v/v/v), isocratic pump at a flow rate of 1.0 $m\ell$/min and 50 ${mu}ell$ of injection volume, fluorescence detector with EX278 nm/EM.456 nm. The calibration curves of four fluoroquinolones showed linearity (${\gamma}$$^2$$\geq$0.999) at concenration range of 0.025-0.6 $\mu\textrm{g}$/ml. The recoveries in fortified chicken muscle represented more than 80% with low coefficient of variation (〈10%) for concentration range of four fluoroquinolones. The detection limits for ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin were 23.5, 3.4, 3.0 and 2.5 ng/g in chicken muscle, respectively. We also monitored fluoroquinolones residue in muscle of chickens (broiler 1:227, Korean native chicken 219, laying chicken 77) using EEC-4-plate screening and HPLC conformation methods. Ten(broiler 5, Korean native chicken 5) out of the fifteen samples which were positively detected by EEC-plate screening method from 1,523 chicken meat were confirmed with ciprofloxacin and enrofloxacin by HPLC. The ranges of residual concentration were 0-0.12 ppm for ciprofloxacin and 0.01-6.79 ppm for enrofloxacin. In conclusion, our method could be applied effectively to determine four fluoroquinolones residues in chicken meat, and further survey for fluoroquinolones residue in chicken meat are needed for more effective control of fluoroquinolones used in livestock.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

The Effects of Marine Sediments and NaCl as Impurities on the Calcination of Oyster Shells (굴패각 소성시 해저 퇴적물과 NaCl 불순물이 소성 특성에 미치는 영향)

  • Ha, Su Hyeon;Kim, Kangjoo;Kim, Seok-Hwi;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.223-230
    • /
    • 2019
  • The calcination of oyster shells have been studied as the possible substitute for the limestone used as an absorbent of $SO_2$ gas. However, since pure shells can not be used in calcination process, some impurities are contained and the changes in the characteristics of the calcination products are expected. In this study, the surface characteristics of the calcination products are investigated by mineralogical analysis according to the contents of NaCl, which can be derived from sea water, and sediments on the surface of the shell as impurities. The marine sediments on the shells were mainly composed of quartz, albite, calcite, small amounts of amphibole and clay minerals such as ilite, chlorite and smectite. After calcination of oyster shells mixed with 0.2-4.0 wt% sediments at $900^{\circ}C$ for 2 hours, regardless of the dehydration, dehydroxylation, and phase change of these minerals at the lower temperature than this experiment, no noticeable changes were observed on the specific surface area of the calcined product. However, when mixed with 0.1 to 2.0 wt% NaCl, the specific surface area generally increases as compared with the shell sample before calcination. The specific surface area increases with increasing amount of salt, and then decreases again. This is closely related to the changes of surface morphology. As the amount of NaCl increases, the morphology of the surface is similar to that of gel. It changes into a slightly angular, smaller particle and again looks like gel with increasing amount of NaCl. Our results show that NaCl affects morphological changes probably caused by melting of some oyster shells, but may have different effects on the specific surface area of calcination product depending on the NaCl contents.