• 제목/요약/키워드: particle motion

검색결과 462건 처리시간 0.027초

GIS내에 함유된 자유 도전성 파티클의 거동해석 (A Numerica analysis on the lift-off motion of Free Conducting Particle in GIS)

  • 이방욱;구자윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1925-1928
    • /
    • 1996
  • In this work, the behavior of conducting wire type particles existing inside the cylinder type coaxial electrode has been systematically investigated by charge simulation method and electrostatic force analysis from the view point of the acquired charging before being lifted off into the gap under the high ac voltage. Spheroidal charge are adopted as a image charge for the CSM analysis in order to calculate the acquired charges of the particles which are erected on the surface of the outer electrode. For this purpose, different material of the particle and their lengths and diameters have been considered in view to calculate their lift-off field, acquired charge and to understand their effect on the lift-off voltage. The results imply that the particle lengths and diameter have an different influence on the particle behavior in GIS system.

  • PDF

Brownian dynamics 를 이용한 입자 포집 모사 (Simulation of particle filtration by Brownian dynamics)

  • 방종근;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1922-1927
    • /
    • 2008
  • In the present study, deposition of discrete and small particles, which diameter is less than $1{\mu}m$, on a filter element was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation and Brownian random motion was treated by Brownian dynamics. Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector and deposit layer. Interaction between flow field and deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

  • PDF

Electron Emission Mechanism in the Surface Conduction Electron Emitter Displays

  • Cho, Guang-Sup;Choi, Eun-Ha;Kim, Young-Guon;Kim, Dai-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.139-140
    • /
    • 2000
  • The origin of the display current in the surface conduction electron emitter displays has been verified in the calculation of the electron trajectory. Some electrons move directly toward the display surface as an anode current which is generated due to the inertial force of electron motion along the curved electric field lines with a small curvature near the fissure area..

  • PDF

나노유체 입자상 모양의 유효 열전도도에의 영향 (The effects of particle shape on the effective thermal conductivity enhancement of nanofluids)

  • 구준모;강용태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2106-2109
    • /
    • 2008
  • Nanofluids have been studied as possible alternatives for heat transfer fluids to improve the efficiency of heat exchangers. There are deviations of measured effective thermal conductivities between research-groups, and the mechanisms of the effective thermal conductivity enhancement of nanofluids are not confirmed yet. In this study, the effects of particle shape on the effective thermal conductivity enhancement are discussed and presented as a possible explanation of the deviations. The particle motion effect is found to be negligible for nanofluids of high aspect ratio cylindrical particles, which is believed to be important for nanofluids of spherical particles, while the percolation network formation and contact resistance play dominant roles in determining the effective thermal conductivity.

  • PDF

Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames

  • Chung, Hee-Taeg;Kang, Shin-Hyun;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.171-180
    • /
    • 2005
  • We present numerical results for inertialess elliptic particle suspensions in a Newtonian fluid subject to simple shear flow, using the sliding bi-periodic frame concept of Hwang et al. (2004) such that a particulate system with a small number of particles could represent a suspension system containing a large number of particles. We report the motion and configurational change of elliptic particles in simple shear flow and discuss the inter-relationship with the bulk shear stress behaviors through several example problems of a single, two-interacting and ten particle problems in a sliding bi-periodic frame. The main objective is to check the feasibility of the direct simulation method for understanding the relationship between the microstructural evolution and the bulk material behaviors.

수직 Rayleigh 유동내의 입자 거동 해석 (Analysis of Particles Motion in Vertical Rayleigh Flow)

  • 고석보;전용두;이금배
    • 설비공학논문집
    • /
    • 제19권6호
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

A Lagrangian Stochastic Model for Turbulent Dispersion

  • Lee, Changhoon;Kim, Byunggu;Kim, Namhyun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1683-1690
    • /
    • 2001
  • A Lagrangian stochastic model is adopted for the calculations of turbulent dispersion in turbulent channel flows. Dispersion of a fluid particle and relative dispersion between two particles released at the sane location are investigated and compared with the classical seating relations for homogeneous turbulence. The viscous effect is realized by adding a Browinian random walk to the calculation of the position of a particle. The near-wall accumulation of particles is examined.

  • PDF

LES of a Cumulus Cloud with Explicit Lagrangian Droplets

  • Kang I.S.;Noh Y.;Raasch S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.233-236
    • /
    • 2006
  • LES model of a cumulus cloud is developed in which the motion of a large number of water droplets are explicitly simulated. Model provides various important information of the cloud process such as entrainment and internal mixing, the distribution of droplets within cloud, and the evolution of particle size spectrum.

  • PDF

2차원 4극 전극 사이에서의 하전 입자의 동전기력학적 거동 (Electrodynamic Behavior of a Charged Particle among Two-Dimensional Quadrupole Electrodes)

  • 박석주;임정환;김상도;최호경;박현설;박영옥
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.741-749
    • /
    • 2001
  • An inhomogeneous hyperbolic electric field is established among two-dimensional quadrupole electrodes to which an ac voltage is applied. Conditions under which charged particles are focused into a narrow axis region of the plug laminar flow are discussed. The aerodynamic forces influence the behavior of the charged particles in the quadrupole electric field. We derived the dimensionless equations of motion of a charged particle in the alternating quadrupole electric field, and discussed particle trajectories and focusing performance in terms of two dimensionless parameters, which are functions of particle size, operating pressure, and the amplitude and frequency of applied AC voltage, with the results of numerical simulations and experiments.

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar;Thaar M. Aljuwaya;Mahmoud M. Taha;Muthanna H. Al-Dahhan
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4213-4227
    • /
    • 2023
  • Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.