• 제목/요약/키워드: partial strength connection

검색결과 27건 처리시간 0.023초

Standardization of composite connections for trapezoid web profiled steel sections

  • Saggaff, A.;Tahir, M.M.;Sulaiman, A.;Ngian, S.P.;Mirza, J.
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.765-784
    • /
    • 2015
  • Connections are usually designed either as pinned usually associated with simple construction or rigid normally is associated with continuous construction. However, the actual behaviour falls in between these two extreme cases. The use of partial strength or semi-rigid connections has been encouraged by Euro-code 3 and studies on semi-continuous construction have shown substantial savings in steel weight of the overall construction. Composite connections are proposed in this paper as partial or full strength connections. Standardized connection tables are developed based on checking on all possible failure modes as suggested by "component method" for beam-to-column composite connection on major axis. Four experimental tests were carried out to validate the proposed standardised connection table. The test results showed good agreement between experimental and theoretical values with the ratio in the range between 1.06 to 1.50. All tested specimens of the composite connections showed ductile type of failure with the formation of cracks occurred on concrete slab at maximum load. No failure occurred on the Trapezoidal Web Profiled Steel Section as beam and on the British Section as column.

기둥관통형 RC 기둥-철골 보 접합부에 관한 실험적 연구 (An Experimental Study on Column Penetration Joint of RC Column-Steel Beam)

  • 김승훈;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.475-480
    • /
    • 1998
  • The composite framed structures, consisting of RC columns and steel beams more popular in korea because of their efficiency and quality. However the force transfer mechanisms between the column and beam may by very complicated since the materials of columns and beams are different. This study develops "the column penetration joint" which the web of steel beam doesn't penetrate and which could improve the strength, deformation, and energy dissipation capacities compared to existing composite joints. It is the concrete-filled square tube joint with the exterior diaphragms and the cruciform stiffening plates. This study evaluated the strength of RC column penetration to steel beam connection by analyzing the results of partial experiments, and reviewed the applicability the strength formula through the comparison of tested results of joint experiment.

  • PDF

전단스터드의 변형특성에 관한 유한요소해석 -고강도 콘크리트를 사용한 합성보- (Finite Element Analysis of Deformation Characteristics of the Shear Studs embedded in High Strength Concrete Slab of the Composite Beam)

  • 신현섭
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.473-482
    • /
    • 2007
  • 합성보가 구조적으로 안전하게 거동하고, 합성단면이 고유의 극한모멘트를 발휘하기 위해서는 전단연결재의 강도뿐만아니라 연성적 거동이 전제조건으로 작용한다. 본 연구에서는 고강도 콘크리트가 사용된 합성보에서 하중형태, 합성율 및 전단스터드의 배치를 달리 하였을 때 일반강도 콘크리트가 사용된 경우에 비해 비교적 적은 스터드의 변형능력이 구조거동 및 설계조건에 미치는 영향을 유한요소해석을 통해 분석하여 보았다. 해석결과에 따르면 고강도 콘크리트를 사용한 합성보의 부분합성 설계에서는 스터드 자체의 강도와 상대변위로 평가되어지는 변형능력이 함께 고려되어야 한다. 특히, 스터드가 등간격으로 배치된 합성보에 등분포 또는 유사 형태의 하중이 작용할 경우 스터드의 변형능력이 합성설계에 대한 제약조건으로 작용하며 이러한 경우 스터드는 외부하중에 대한 전단력의 분포를 고려하여 배치되어야 한다.

RC자켓팅으로 보강된 기존 벽체의 면외방향 내진성능 실험평가 (Experimental Investigation of Out-of-Plane Seismic Resistance of Existing Walls Strengthened with RC Jacketing)

  • 엄태성;허무원;이상현;이범식;천영수
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.239-248
    • /
    • 2019
  • In this study, the out-of-plane seismic resistance of lightly-reinforced existing walls strengthened with thick RC jacket was investigated. The thick RC jacket with a thickness of 500 mm was placed at one side of the thin existing wall with a thickness of 150 mm. At the interface between the wall and RC jacket, a tee-shaped steel section with a number of anchor bolts and dowel bars was used as the shear connector. To investigate the connection performance and strengthening effects, the cyclic loading tests of four jacketed wall specimens were performed. The tests showed that the flexural strength of the jacketed walls under out-of-plane loading was significantly increased. During the initial behavior, the tee shear connector transferred forces successfully at the interface without slip. However, as the cracking, spalling, and crushing of the concrete increased in the exiting walls, the connection performance at the interface was significantly degraded and, consequently, the strength of the jacketed walls was significantly decreased. The flexural strength of the jacketed walls with tee shear connector was estimated considering the full and partial composite actions of the tee shear connector.

Behaviour and design of composite beams subjected to flexure and axial load

  • Kirkland, Brendan;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.615-633
    • /
    • 2015
  • Composite steel-concrete beams are used frequently in situations where axial forces are introduced. Some examples include the use in cable-stayed bridges or inclined members in stadia and bridge approach spans. In these situations, the beam may be subjected to any combination of flexure and axial load. However, modern steel and composite construction codes currently do not address the effects of these combined actions. This study presents an analysis of composite beams subjected to combined loadings. An analytical model is developed based on a cross-sectional analysis method using a strategy of successive iterations. Results derived from the model show an excellent agreement with existing experimental results. A parametric study is conducted to investigate the effect of axial load on the flexural strength of composite beams. The parametric study is then extended to a number of section sizes and employs various degrees of shear connection. Design models are proposed for estimating the flexural strength of an axially loaded member with full and partial shear connection.

프리캐스트 콘크리트 계단 접합부의 접합방식에 따른 성능평가 (Performance Evaluation of the Stair Joints Constructed with Partial Precast Concrete System)

  • 장극관;이은진;진병창
    • 콘크리트학회논문집
    • /
    • 제20권6호
    • /
    • pp.833-840
    • /
    • 2008
  • 부분 프리캐스트 콘크리트 부재를 계단실에 적용할 때 현장타설이나 PC공법에 비해 시간 및 비용을 절감할 수 있다. 부분 프리캐스트 계단 부재는 각 부재의 접합방식에 따라 피난용도로 사용되는 계단실의 성능이 매우 달라질 수 있으므로 계단 접합부의 종류에 따른 성능평가를 실험적 연구를 통해 알아보고자 하였다. 현장타설되는 일체형 접합부는 계단참 끝단에 응력이 집중되어 많은 보강이 필요하고, PC공법에서 사용되는 핀접합부는 경사계단의 중앙부에 최대응력이 발생되며, 접합부의 휨성능을 무시하기 때문에 철근 배근량이 증가할 뿐만 아니라 사용성이 현저히 떨어지게 된다. 이러한 단점을 보완한 볼트형 반강접 접합부는 일체형에 가까운 내력을 보유하였으며, 연성비는 일체형에 비해 약 0.7배, 핀접합형에 비해 약 2.8배의 성능을 가져 지진하중 등의 횡하중에 대한 성능도 뛰어남을 알 수 있었다. Eurocode 접합부 분류기준에서는 semi rigid-full strength에 속하는 반강접합으로 볼 수 있고, 강성감소율 40%를 적용한 모델을 이용하여 거동을 예측할 수 있다.

Behaviour of bolted connections in concrete-filled steel tubular beam-column joints

  • Beena, Kumari;Naveen, Kwatra;Shruti, Sharma
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.443-456
    • /
    • 2017
  • Many authors have established the usefulness of concrete filled steel tubular (CFST) sections as compression members while few have proved their utility as flexural members. To explore their prospective as part of CFST frame structures, two types of connections using extended end plate and seat angle are proposed for exterior joints of CFST beams and CFST columns. To investigate the performance and failure modes of the proposed bolted connections subjected to static loads, an experimental program has been executed involving ten specimens of exterior beam-to-column joints subjected to monotonically increasing load applied at the tip of beam, the performance is appraised in terms of load deformation behaviour of joints. The test parameters varied are the beam section type, type and diameter of bolts. To validate the experimental behaviour of the proposed connections in CFST beam-column joints, finite element analysis for the applied load has been performed using software ATENA-3D and the results of the proposed models are compared with experimental results. The experimental results obtained agree that the proposed CFST beam-column connections perform in a semi-rigid and partial strength mode as per specification of EC3.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

대형 컨테이너선 건조를 위한 고능률 용접기술 (High Productive Welding Technologies for Large Container Ship)

  • 구연백;성희준;최기영;김경주
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.80-86
    • /
    • 2009
  • In order to improve productivity of large container ship construction, large heat input and/or high productive welding technologies are necessary. This can be achieved by the joint research and cooperation among steel maker, welding consumable company, welding equipment company and ship yards. Two electrodes SAW process is effective the plate butt welding and partial joint welding, while FGB welding process is for the connection of block to block joint. The higher strength and thicker steel is developed, the more reliable welding procedure such as two electrodes EGW including light weight welding equipment should be developed.

  • PDF

PC 기둥-H형강보의 볼트접합부에관한 실험적 연구III (An Experimental Study III on the Bolted Connection between H-Beam and Precast-Concrete Column)

  • 여인석;박순규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.307-310
    • /
    • 2005
  • The PCS system, which consists of precast concrete column and steel beam, has been under development. Experimental test has been carried out to investigate the structural performance of the system under earthquake. Two types of test specimens of beam-column joints are designed in order to compare the performances. One is the system with reinforced concrete slab and the other is without slab. It is found that the system with slab could satisfy all of the requirements from ACI Criteria such as strength, stiffness degradation and energy dissipation capacity except initial stiffness. It is also investigated that the stiffness of the joint is belong to rigid joint type according to Bjorhovde criterion. And it is observed that the partial-composite system between beam and slab is more effective than full-composite system in the respect of the energy dissipation capacity of the system.

  • PDF