• 제목/요약/키워드: partial oxidation

검색결과 308건 처리시간 0.028초

대기압 플라즈마를 이용한 메탄 개질 반응 (Methane Reforming Using Atmospheric Plasma Source)

  • 이대훈;김관태;차민석;송영훈;김동현
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.64-68
    • /
    • 2005
  • Methane reforming processes to obtain hydrogen were investigated experimentally by using atmospheric plasma source. Among possible reforming processes, such as a $CO_2$ reforming(dry reforming), a partial oxidation (POx), a steam reforming(SR), and a steam reforming with oxygen(SRO or auto-thermal reforming), partial oxidation and the steam reforming with oxygen were considered. We choose a rotating arc plasma as an atmospheric plasma source, since it shows the best performances in our preliminary tests in terms of a methane conversion, a hydrogen production, and a power consumption. Then, the effects of a feeding flow-rate, an electrical power input to a plasma reaction, an $O_2/C$ ratio and a steam to carbon ratio in the case of SRO on the reforming characteristics were observed systematically. As results, at a certain condition almost 100% of methane conversion was obtained and we could achieve the same hydrogen production rate by consuming a half of electrical power which was used by the best results for other researchers.

  • PDF

전이금속으로 치환된 하이드로탈사이트 촉매에 의한 메탄의 부분산화 (Partial Oxidation Of Methane over Transiton metal-substituted Hydrotalcite Catalysts)

  • 이승환;곽정훈;남석우;임태훈;홍성안;윤기준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2007
  • 고정층반응기에서 여러 가지 전이금속으로 치환된 하이드로탈사이트($[M_xMg_{6-x}Al_2(OH)_{16}(CO_3)^{2-}]{\cdot}H_2O;$ M: 전이금속(Ni, Mn, Co, Cu, Zn) x: 전이금속 치환비($x=0.5{\sim}6$))를 합성하고 이를 소성한 후 메탄의 부분산화 반응에 사용하였다. 반응 시 도입되는 $CH_4/O_2$비는 2로 하고 $VHSV=120,000cm^3/g$ h, 온도를 $500^{\circ}C$ 부터 $50^{\circ}C$ 간격으로 하여 $800^{\circ}C$까지 수행하였다. 실험결과 다른 전이금속들 중에서 니켈로 치환된 촉매가 대체적으로 부분산화반응을 촉진시키는데 좋은 것으로 나타났으며, 실험 결과 니켈의 hydrotalcite 중의 치환비(x)에 따른 차이는 별로 없었다.

  • PDF

MODELING AND OPTIMIZATION Of A FIXED-BED CATALYTIC REACTOR FOR PARTIAL OXIDATION OF PROPYLENE TO ACROLEIN

  • Lee, Ho-Woo;Ha, Kyoung-Su;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.451-451
    • /
    • 2000
  • This study aims for the optimization of process conditions in a fixed-bed catalytic reactor system with a circulating molten salt bath, in which partial oxidation of propylene to acrolein takes place. Two-dimensional pseudo-homogeneous model is adopted with estimation of suitable parameters and its validity is corroborated by comparing simulation result with experimental data. The temperature of the molten salt and the feed composition are found to exercise significant influence on the yield of acrolein and the magnitude of hot spot. The temperature of the molten salt is usually kept constant. This study, however, suggests that the temperature of the molten salt must be axially adjusted so that the abrupt peak of hot spot should not appear near the reactor entrance. The yield of acrolein is maximized and the position and the magnitude of hot spot are optimized by the method of the iterative dynamic programming (IDP).

  • PDF

회전 아크를 이용한 메탄 개질 반응에서 플라즈마 모드에 따른 개질 특성 (Characteristics of $CH_4$ Reforming by Rotating Arc)

  • 김동현;이대훈;김관태;송영훈
    • 한국연소학회지
    • /
    • 제11권2호
    • /
    • pp.15-21
    • /
    • 2006
  • Characteristics of a plasma reactor for partial oxidation of methane, especially focused on the role and effectiveness of plasma chemistry, are investigated. Partial oxidation of methane is investigated using a rotating arc which is a three dimensional version of a typical gliding arc. Three different modes of operation were found. Each mode shows different reforming performance. The reason for the difference is due to the difference in relative role of thermal and plasma chemistry in overall process. A mode with high temperature results higher methane conversion and hydrogen selectivity in contrast to the mode with lower temperature where poor methane conversion and higher selectivity of $C_2$ species are observed. In this way, we can confirm that by controlling characteristic of process or controlling relative strength of plasma chemistry and thermal chemistry, it is possible to map an optimal condition of reforming process by rotating arc.

  • PDF

메탄 개질에서의 회전 아크 플라즈마 특성 (Characteristics of Rotating arc Plasma in $CH_4$ Reforming)

  • 이대훈;김관태;차민석;송영훈;김동현
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.144-148
    • /
    • 2006
  • Characteristics of a plasma reactor for partial oxidation of methane, especially focused on the role and effectiveness of plasma chemistry, is investigated. Partial oxidation of methane is investigated using a rotating arc which is a three dimensional version of a typical glidingarc. The rotating arc has both the characteristics of equilibrium and non-equilibrium plasma. Non-equilibrium characteristics of the rotating gliding arc can be increased by rotating an elongated arc string attached at both the tip of inner electrode and the edge of outer electrode. In this way, plasma chemistry can be enhanced and hydrogen selectivity can reach almost 100% that is much higher than thermal equilibrium condition. As a result, the present study enables the strategic approach of the plasma reforming process by means of appropriate reactor design to maximize plasma effect and resulting in maximized reaction efficiency.

  • PDF

혼합가스 주입형 연료전지를 위한 전지 디자인 (Cell Design for Mixed Gas Fuel Cell)

  • 박병탁;윤성필
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.860-864
    • /
    • 2005
  • In this study, we fabricated honeycomb type Mixed-Gas Fuel Cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-shaped anode with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites and the others were filled with partial oxidation (POX) catalyst to increase fuel conversion. Furthermore we employed the sol-gel technique which can increase cell performance and decrease carbon coking.

자일렌의 기상 산화반응에서의 반응 메카니즘과 담체영향 (Reaction Mechanism and Support Effect for the Gas-Phase Oxidation of o-Xylene)

  • 이근대;이호인
    • 공업화학
    • /
    • 제2권2호
    • /
    • pp.155-164
    • /
    • 1991
  • o-자일렌 산화반응의 반응메카니즘과 촉매활성에 대한 산화바나듐의 산화상태 및 담체의 영향을 연구하였다. o-자일렌의 산화반응은 연계반응 메카니즘 및 병렬반응 메카니즘에 의해 동시에 진행되는 것으로 나타났다. 높은 산화수를 지닌 산화바나듐은 무수프탈산으로의 선택적 산화반응에 유리한 것으로 나타났고, 반면에 낮은 산화수의 경우는 무수프탈산의 CO 및 $CO_2$로의 완전 산화반응을 유발함을 알 수 있었다. 그리고 결정성 $V_2O_5$가 낮은 비결정성의 경우보다 부분 산화반응에 대한 높은 선택도를 나타내었다.

  • PDF

Ar+O2 혼합가스 취입에 의한 용철의 탈탄 반응속도 (Decarbonization Kinetics of Molten Iron by Ar+O2 Gas Bubbling)

  • 손호상;정광현
    • 대한금속재료학회지
    • /
    • 제47권2호
    • /
    • pp.107-113
    • /
    • 2009
  • Molten iron with 2 mass % carbon content was decarbonized at 1823 K~1923 K by bubbling $Ar+O_2$ gas through a submerged nozzle. The reaction rate was significantly influenced by the oxygen partial pressure and the gas flow rate. Little evolution of CO gas was observed in the initial 5 seconds of the oxidation; however, this was followed by a period of high evolution rate of CO gas. The partial pressure of CO gas decreased with further progress of the decarbonization. The overall reaction is decomposed to two elementary reactions: the decarbonization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of carbon and oxygen contents in the melt and the CO partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model. Based on the present model, it was explained that the decarbonization rate of molten iron was controlled by gas-phase mass transfer at the first stage of reaction, but the rate controlling step was transferred to liquid-phase mass transfer from one third of reaction time.

산화철의 환원-산화 반응을 이용한 수소저장에 미치는 Rh/Ce/Zr의 효과 (The effect of Rh/Ce/Zr additives on the redox cycling of iron oxide for hydrogen storage)

  • 이동희;차광서;박주식;강경수;김영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated hydrogen storage and production properties using redox system of iron oxide($Fe_{3}O_{4}$ + $4H_{2}$ ${\leftrightarrows}$ 3Fe + $4H_{2}O$) modified with rhodium, ceria and zirconia under atmospheric pressure. Reduction of iron oxide with hydrogen(hydrogen storage) and re-oxidation of reduced iron oxide with steam(hydrogen evolution) was carried out using a temperature programmed reaction(TPR) technique. On the temperature programmed studies, the effects of amounts of cerium and zirconium on the re-oxidation rate of partial reduced iron oxides were increased with increasing metal additives amount, but the rhodium amount showed little effect on the re-oxidation rate. On the thermal studies, the re-oxidation rates were enhanced with increasing temperature(300 $^{\circ}C$ < 350 $^{\circ}C$).

  • PDF