벡터양자화에서 고속 인코딩에 사용되는 기존 방법인 PDS(partial distance search)와 FNNS(fast nearest neighbor search)를 결합한 FNNPDS(fast nearest neighbor partial distance search)를 VISI로 구현하기 위한 설계 방법을 제안하고, 모의실험을 통해 FNNPDS가 다른 방법에 비해 보다 고속화가 이루어짐을 입증한다. 모의실험 방법은 임의의 입력벡터에 대해 최단거리 부호벡터를 찾는 타이밍도를 고찰하고, Lena와 Peppers 영상에 대한 입력벡터당 평균 클럭 사이클을 비교한다. 모의실험 결과에 의하면 FNNPDS의 클럭 사이클 수는 다른 방법들보다 $79.2\%\~11.7\%$ 감소되었다.
윤곽선 이미지 매칭에서 이미지의 노이즈를 제거하는 것은 직관적이고 정확한 매칭을 위해 매우 중요한 요소이다. 본 논문에서는 윤곽선 이미지 매칭에서 부분 노이즈를 허용하는 문제를 시계열 도메인에서 다룬다. 이를 위해, 먼저 부분 노이즈 제거 시계열(partial denoising time-series)을 정의하여 이미지 도메인이 아닌 시계열 도메인에서 매칭 문제를 신속하게 해결하는 방법을 제안한다. 다음으로, 두 윤곽선 이미지, 즉 질의 시계열과 데이터 시계열에서 구성된 부분 노이즈 제거 시계열들 간에 가질 수 있는 최소거리인 부분 노이즈 제거 거리(partial denoising distance)를 제시한다. 본 논문에서는 이를 두 윤곽선 이미지 간의 유사성 척도로 사용하여 윤곽선 이미지 매칭을 수행한다. 그러나, 부분 노이즈 제거 거리를 측정하기 위해서는 매우 많은 계산이 빈번하게 발생하므로, 본 논문에서는 부분 노이즈 제거 거리의 하한을 구하는 방법을 제안한다. 마지막으로, 부분 노이즈 제거 윤곽선 이미지 매칭의 질의 방식에 따라 범위 질의 매칭과 k-NN 질의 매칭을 각각 제안한다. 실험 결과, 제안한 부분 노이즈 제거 윤곽선 이미지 매칭은 성능을 수 배에서 수십 배까지 향상시킨 것으로 나타났다.
본 논문에서는 라만 스펙트럼의 고속 탐색을 위해 특이값 분해(SVD, Singular Value Decomposition)를 이용한 새로운 탐색 알고리즘들을 제안한다. 제안 알고리즘에서는 SVD를 통해 얻은 특이벡터를 중요도에 따라 선별하여 실험에 사용함으로써 계산량 단축을 도모한다. 파일럿 테스트(Pilot test)를 수행하여 일부 데이터들을 미리 탐색 대상에서 제외시키고 부분탐색법(PDS, Partial Distance Search)을 적용하여 탐색을 수행함으로써 큰 폭으로 계산량을 감소시킨다. 실험에 사용한 데이터베이스는 총 14,032종의 화학 물질 라만 스펙트럼으로 구성하였으며, 기존의 탐색 방법인 전체탐색법(Full Search), PDS와 평균피라미드탐색법(MPS, Mean Pyramid Search)를 1차원공간상의 신호에 적용하기 적절하게 변형한 1DMPS에 PDS를 적용한 실험(1DMPS+PDS), 데이터의 분산을 내림차순 정렬하여 !DMPS와 PDS를 적용한 실험(1DMPS Sort with Variance+PDS), 데이터의 250차원 성분만 SVD 변환하여 PDS를 적용한 실험(250SVD+PDS), 그리고 제안 알고리즘 PSP(Partial SVD with PDS)와 PSSP(Partial SVD with Sorted Pilot test)을 적용한 실험을 비교 분석하였다. 각 알고리즘의 성능은 곱셈 및 덧셈의 연산량 비교를 통해 이루어졌는데, 실험 결과에 따르면 250SVD+PDS에 비해 제안알고리즘 PSP는 15.7%, PSSP에서는 64.8%의 계산량 감소를 확인하였다.
This paper describes an approach for extracting invariant features using a view-based representation and recognizing an object with a high speed search method in FLIR. In this paper, we use a reformulated eigenspace technique based on robust estimation for extracting features which are robust for outlier such as noise and clutter. After extracting feature, we recognize an object using a partial distance search method for calculating Euclidean distance. The experimental results show that the proposed method achieves the improvement of recognition rate compared with standard PCA.
실시간 여행경로에 대한 정보를 제공하기 위해 동적 최적경로탐색 시스템은 실시간 경로 탐색을 통해 대다수 사용자의 요구를 충족시키는 최적경로정보를 제공한다. 따라서 동적 최적경로탐색 시스템은 주기적으로 최적경로를 갱신하여야 하므로 짧은 시간에 최적경로를 탐색하여야 한다. 이를 위해 본 논문에서는 제한적인 탐색영역 설정기법을 사용하여 빠르고 효율적인 동적 경로탐색을 가능하게 하였다. 또한 본 연구에서는 저사양의 하드웨어로도 동적 경로탐색이 가능한 기법을 개발하였다. 대표경로를 사용한 탐색영역 설정 기법으로 갱신 주기에 따른 유효 탐색영역에 대한 최적해와 대표경로를 조합한 부분해를 사용하는 부분 탐색영역 설정기법을 제안하였다. 가상의 도로망에 적용한 결과 기존의 방법에 비해 최대 50% 정도의 좁은 탐색영역으로도 최적의 경로를 탐색할 수 있었다. 또한 이동거리에 상관없이 안정적인 탐색영역을 설정할 수 있어서 단거리 이동경로 탐색이 가능한 정도의 하드웨어 성능으로도 장거리 최적경로를 탐색할 수 있었다.
In this paper in order to reduce the encoding complexity required in the full search vector quantization(VQ), a new classified vector quantization(CVQ) technique is described employing the minimum-distance classifier. The determination of the optimal subcodebook sizes for each class is an important task in CVQ designs and is not an easy work. Therefore letting the subcodebook sizes be equal. A CVQ technique. Which satisties the optimal CVQ condition approximately, is proposed. The proposed CVQ is a kind of the partial search VQ because it requires a search process within each subcodebook only, and the minimum encoding complexity since the subcodebook sizes are the same in each class. But simulation results reveal while the encoding complexity is only O(N$^{1/2}$) comparing with O(N) of the full-search VQ. A simple systolic array, which has the through-put of k, is also proposed for the implementation of the VQ. Since the operation of the classifier is identical with that of the VQ, the proposed array is applied to both the classifier and the VQ in the proposed CVQ, which shows the usefulness of the proposed CVQ.
본 논문에서는 영상 백터 양자화를 위한 새로운 고속 부호화 기법을 제안하는데, 제안 기법은 다차원의 참조 표로 복수 특징의 부분 거리를 사용한다. 복수 특징을 사용하는 기존 기법은 탐색 순서와 연산 과정을 고려할 때 복수 특징을 단계적으로 처리한다. 반면에 제안 기법은 참조 표를 사용하여 복수 특징들을 동시에 활용한다. 본 논문에서는 가용한 수준의 메모리를 위해 테두리 효과를 고려하는 참조 표의 구성 방법과 참조 표의 부분 거리를 활용하며 현재의 탐색을 중지하는 방법을 상세하게 기술한다. 시뮬레이션 결과는 제안 기법의 효율성을 확인시켜 주는데, 부호책 크기가 256일 때 제안 기법은 OHTPDS 기법이나 $M-L_2NP$ 기법 등과 같이 최근에 제안된 기법들이 요구하는 연산량의 $70\%$ 수준까지 연산량을 감소시킨다. 가용한 수준의 전처리와 메모리를 사용함으로써 제안 기법은 전체탐색 기법과 통일한 화질을 유지하면서 전체 탐색 기법이 요구하는 연산량의 $2.2\%$ 이하로 연산량을 감소시킨다.
이 논문에서는 장애물이 존재하는 환경에서 적외선 센서를 가진 다수의 감시 로봇이 획득한 정보를 융합하여 분산되어있는 표적의 위치 좌표를 추정하는 기법을 제안한다. 방위각(azimuth)과 표적을 대응시키는 방법으로는 장애물이 존재하지 않는 경우에서 제안되었던 깊이-우선(depth-first) 트리 탐색(tree search) 기법을 바탕으로, 우회경로 탐색, 중간 단계 탐색 종료, 하위 단계 부분 탐색, 결정기준 보완 등을 추가함으로써 트리 탐색을 확장한 새로운 기법을 제시하였다. 방위각과 표적이 대응된 후에는 하나의 표적을 가리키는 방위각들에 최소 제곱 오차(least square error) 알고리듬을 적용하여 최적 교점을 구함으로써 표적의 위치 좌표를 추정한다. 제안한 위치 추정 기법의 좌표 추정 성능과 복잡도를 모의실험으로 제시하고 분석한다.
최근에 라만스펙트럼에 대한 고속 검색 방법은 많은 관심을 받아왔다. 지금까지 가장 간단하고 널리 사용되는 방법은 주어진 스펙트럼과 데이터베이스 스펙트라 사이의 유클리드 거리를 계산하고 비교하는 방법이다. 하지만 고차원 데이터의 속성으로 검색의 문제는 그리 간단하지 않다. 가장 큰 문제점중의 하나는 검색 방법에 있어서 연산량이 많아 계산 시간이 너무 오래 걸린다는 것이다. 이러한 문제점을 극복하기 위해, 코드워드의 MPS(Mean Pyramids Search)와 PDS(Partial Distortion Search)을 사용하는 알고리즘이 현재 이미지 코딩 분야에서 고속 검색 알고리즘으로 널리 사용되고 있다. 하지만 이 방법은 1차원 데이터의 경우에는 적합하지 않다. 본 논문에서 우리는 라만 스펙트럼 데이터에 적합한 3가지 새로운 방법의 고속 검색 알고리즘을 제안한다. 이 방법은 벡터의 두 개의 주요한 특징으로 평균과 분산을 사용하여 후보가 될 수 없는 많은 코드워드를 계산하지 않으므로 연산량을 줄이고 계산 시간을 줄여준다. 실험은 1DMPS+PDS와 비교하여 1DMPS Sort+PDS는 42.8%, 1DMPS Sort+PDS는 48.6%, 1DMPS Sort with Sorted Variance+PDS는 55.2%의 성능향상을 보였다. 실험결과는 제안된 알고리즘이 고속 검색에 적합함을 확인시켜 준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.