• 제목/요약/키워드: partial differential-difference equations

검색결과 62건 처리시간 0.026초

RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR PARABOLIC PROBLEMS

  • Jun, Youn-Bae;Mai, Tsun-Zee
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.281-294
    • /
    • 2006
  • Many partial differential equations defined on a rectangular domain can be solved numerically by using a domain decomposition method. The most commonly used decompositions are the domain being decomposed in stripwise and rectangular way. Theories for non-overlapping domain decomposition(in which two adjacent subdomains share an interface) were often focused on the stripwise decomposition and claimed that extensions could be made to the rectangular decomposition without further discussions. In this paper we focus on the comparisons of the two ways of decompositions. We consider the unconditionally stable scheme, the MIP algorithm, for solving parabolic partial differential equations. The SOR iterative method is used in the MIP algorithm. Even though the theories are the same but the performances are different. We found out that the stripwise decomposition has better performance.

  • PDF

케이블과 현수교 다리에서 일어나는 진폭이 큰 진동에 대한 연구 (Large Amplitude Oscillations in a Hanging Cable and Suspension Bridge: Some New Connections with Nonlinear Analysis)

  • 오혜영
    • 한국컴퓨터산업학회논문지
    • /
    • 제7권1호
    • /
    • pp.33-38
    • /
    • 2006
  • 케이블 뿐 아니라 현수교의 운동은 비선형 미분방정식에 지배된다. 미분방정식은 비선형성 때문에 진폭이 큰 해가 존재한다. 유한차분법을 이용하여 비선형 방정식의 주기근을 구한다. 일노드의 힘과 힘의 약간 변형된 형태를 이용하여 방정식의 해를 구한다.

  • PDF

MacCormack 방법의 개량에 대한 연구 (Some Modifications of MacCormark's Methods)

  • 하영수;유승재
    • 융합보안논문지
    • /
    • 제5권3호
    • /
    • pp.93-97
    • /
    • 2005
  • MacCormack 방법은 hyperbolic 편미분 방정식의 근을 구하는데 많이 쓰이는 방법으로 그 정확도가 2차 오더가 된다. 하지만 이 방법으로 편미분방정식을 풀 경우 불연속인 점에서는 엔트로피를 만족하지 않는 경우가 있어 우리는 임의의 항을 첨가하여 근을 구해야한다. 이 임의의 항을 첨가하지 않고 직접 방정식으로부터 구하는 방법을 생각하는데 있어서 기존의 MacCormack 방법에 새 central scheme의 개념을 이용하면 전형적인 MacCormack 방법의 정확도와 장점을 보존할 수 있다. 이 새로운 방법을 이용하여 1D Burgers' 방정식과 1D Euler gas dynamic 방정식에 활용하여 그 결과를 살펴본다.

  • PDF

Convergence of nonlinear algorithms

  • Lee, Young-S.;Simeon Reich
    • 대한수학회지
    • /
    • 제32권1호
    • /
    • pp.115-139
    • /
    • 1995
  • Our purpose in this paper is to prove a new version of the nonlinear Chernoff theorem and to discuss the equivalence between resolvent consistency and converge nce for nonlinear algorithms acting on different Banach spaces. Such results are useful in the numerical treatment of partial differential equations via difference schemes.

  • PDF

분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析) (Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions)

  • 장석윤
    • 대한조선학회지
    • /
    • 제13권1호
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

CAPD기법을 이용한 부분방전 현상 해석에 관한 연구 (Analysis of Partial Discharge Phenomena by means of CAPD)

  • 김성홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.939-944
    • /
    • 2002
  • PD phenomena can be regarded as a deterministic dynamical process where PD should be occurred if the local electric field be reached to be sufficiently high. And thus, its mathematical model can be described by either difference equations or differential equations using several state variables obtained from the time sequential measured data of PD signals. These variables can provide rich and complex behavior of detectable time series, for which Chaos theory can be employed. In this respect, a new PD pattern recognition method is proposed and named as 'Chaotic Analysis of Partial Discharges (CAPD)' for this work. For this purpose, six types of specimen are designed and made as the models of the possible defects that may cause sudden failures of the underground power transmission cables under service, and partial discharge signals, generated from those samples, are detected and then analyzed by means of CAPD. Throughout the work, qualitative and quantitative properties related to the PD signals from different defects are analyzed by use of attractor in phase space, information dimensions ($D_0$ and D2), Lyapunov exponents and K-S entropy as well. Based on these results, it could be pointed out that the nature of defect seems to be identified more distinctively when the CAPD is combined with traditional statistical method such as PRPDA. Furthermore, the relationship between PD magnitude and the occurrence timing is investigated with a view to simulating PD phenomena.

  • PDF

유한차분법에 의한 등분포 상재하중하 적층 복합재 경사판 해석 (Analysis of Laminated Composite Skew Plates with Uniform Distributed Load by Finite Difference Method)

  • 박원태;최재진;장석윤
    • 한국강구조학회 논문집
    • /
    • 제12권3호통권46호
    • /
    • pp.291-302
    • /
    • 2000
  • 복합적층 구조물에서 복합재료는 그 자체의 높은 강성, 강도와 내구성등의 특성을 갖고 있을 뿐 아니라, 구조물의 역학적 특성에 따라 얼마든지 재료의 특성을 합리적으로 구성하여 배치할 수 있는 매우 우수한 장점이 있다. 본 연구에서는 등분포로 재하된 복합적층경사판의 처짐에 관한 해석으로서 복합적층 경사판의 처짐을 나타내는 단일 4차 편미분방정식을 3개의 종속변수를 갖는 3원2차 연립방정식을 이용하여 해석하는 수치해석 법을 제시하였으며, 대칭 앵글-플라이 각도로 적층, 역대칭 앵글-플라이 각도로 적층, 비대칭 앵글-플라이 각도로 적층한 경우에 처짐과 단면력을 비교 검토하였다.

  • PDF

EFFICIENT PARALLEL ITERATIVE METHOD FOR SOLVING LARGE NONSYMMETRIC LINEAR SYSTEMS

  • Yun, Jae-Heon
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.449-465
    • /
    • 1994
  • The two common numerical methods to approximate the solution of partial differential equations are the finite element method and the finite difference method. They both lead to solving large sparse linear systems. For many applications, it is not unusal that the order of matrix is greater than 10, 000. For this kind of problem, a direct method such as Gaussian elimination can not be used because of the prohibitive cost. To this end, many iterative methods with modest cost have been studied and proposed by numerical analysts.(omitted)

  • PDF

The Coupling of Conduction with Free Convection Flow Along a Vertical Flat Plate in Presence of Heat Generation

  • Taher, M.A.;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권7호
    • /
    • pp.833-841
    • /
    • 2007
  • The aim of this paper is to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free convection flow adjacent to a vertical flat plate under boundary layer approximation. Using the similarity transformations the governing boundary layer equations for momentum and energy are reduced to a system of partial differential equations and then solved numerically using Finite Difference Method(FDM) known as the Keller-box scheme. Computed solutions to the governing equations are obtained for a wide range of non-dimensional parameters that are present in this problem, namely the coupling parameter P. the Prandtl number Pr and the heat generation parameter Q. The variations of the local heat transfer rate as well as the interface temperature and the friction along the plate and typical velocity and temperature profiles in the boundary layer are shown graphically. Numerical solutions have been consider for the Prandtl number Pr=0.70