• Title/Summary/Keyword: partial differential-difference equation

Search Result 56, Processing Time 0.022 seconds

The Three-Dimensional Partial Differential Equation with Constant Coefficients of Time-Delay of Alternating Direction Implicit Format

  • Chu, QianQian;Jin, Yuanfeng
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1068-1074
    • /
    • 2018
  • In this paper, we consider the delay partial differential equation of three dimensions with constant coefficients. We established the alternating direction difference scheme by the standard finite difference method, gave the order of convergence of the format and the expression of the difference scheme truncation errors.

ON MEROMORPHIC SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS OF FIRST ORDER IN SEVERAL COMPLEX VARIABLES

  • Qibin Cheng;Yezhou Li;Zhixue Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.425-441
    • /
    • 2023
  • This paper is concerned with the value distribution for meromorphic solutions f of a class of nonlinear partial differential-difference equation of first order with small coefficients. We show that such solutions f are uniquely determined by the poles of f and the zeros of f - c, f - d (counting multiplicities) for two distinct small functions c, d.

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF

A Generalized Finite Difference Method for Solving Fokker-Planck-Kolmogorov Equations

  • Zhao, Li;Yun, Gun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.816-826
    • /
    • 2017
  • In this paper, a generalized discretization scheme is proposed that can derive general-order finite difference equations representing the joint probability density function of dynamic response of stochastic systems. The various order of finite difference equations are applied to solutions of the Fokker-Planck-Kolmogorov (FPK) equation. The finite difference equations derived by the proposed method can greatly increase accuracy even at the tail parts of the probability density function, giving accurate reliability estimations. Compared with exact solutions and finite element solutions, the generalized finite difference method showed increasing accuracy as the order increases. With the proposed method, it is allowed to use different orders and types (i.e. forward, central or backward) of discretization in the finite difference method to solve FPK and other partial differential equations in various engineering fields having requirements of accuracy or specific boundary conditions.

Scalable Coding of Depth Images with Synthesis-Guided Edge Detection

  • Zhao, Lijun;Wang, Anhong;Zeng, Bing;Jin, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4108-4125
    • /
    • 2015
  • This paper presents a scalable coding method for depth images by considering the quality of synthesized images in virtual views. First, we design a new edge detection algorithm that is based on calculating the depth difference between two neighboring pixels within the depth map. By choosing different thresholds, this algorithm generates a scalable bit stream that puts larger depth differences in front, followed by smaller depth differences. A scalable scheme is also designed for coding depth pixels through a layered sampling structure. At the receiver side, the full-resolution depth image is reconstructed from the received bits by solving a partial-differential-equation (PDE). Experimental results show that the proposed method improves the rate-distortion performance of synthesized images at virtual views and achieves better visual quality.

An experimental study of magnetic diffusion in Bi-2212 High-Tc supercondutor tube (Bi-2212 고온초전도체 튜브의 자기확산에 관한 연구)

  • 정성기;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.66-70
    • /
    • 2003
  • Transient magnetic diffusion process in a melt-cast Bi2Sr2CaCu20X(Bi-2212) tube was studied by experimental and numerical analyses. The transient diffusion partial differential equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical state model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper. This experiment measure the magnetic flux density in the supercondutor after supply direct-current of Bi-2212 rounded by copper coil. This study was discussed of valid of a previous numerical solution which is compared by the penetrate time and the magnetic flux density difference of between the present results and the numerical solution.

Dynamics Oscillations in Suspension Bridges to Initial Conditions (현수교 다리에서의 초기치 문제에 대한 역학적 운동)

  • Hye-Young Oh
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.5
    • /
    • pp.569-574
    • /
    • 2002
  • We model the torsional oscillation of a suspension bridge, which is the forced sine-Cordon equation on a bounded domain. We use finite difference method to solve nonlinear partial differential equation numerically. The partial differential equation has multiple periodic solutions. Whether the span oscillates with small or large amplitude depends oかy on its initial displacement and velocity. Moreover, we observe that the qualitative properties are consistent with the behavior observed at the Tacoma Narrows Bridge on the day of its collapse.

  • PDF

Unsteady Groundwater Flow in Aquifer (대수층의 부정류에 관한 연구)

  • 이정규
    • Water for future
    • /
    • v.22 no.2
    • /
    • pp.233-239
    • /
    • 1989
  • The partial differential equation of the groundwater flow was reduced to an ordinary differential equation by the Boltzmann transformation. Its numerical solutions were obtained by the finite difference method and the new method to get the initial missing slope using the Richardson method and the finite difference equation was proposed. The solutions computed by the newly proposed method were compared with investigator's computations and they showed a satisfactory agreement and that the proposed method is easy and simple to get solutions.

  • PDF

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR A SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE

  • DABA, IMIRU TAKELE;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.655-676
    • /
    • 2021
  • A parameter uniform numerical scheme is proposed for solving singularly perturbed parabolic partial differential-difference convection-diffusion equations with a small delay and advance parameters in reaction terms and spatial variable. Taylor's series expansion is applied to approximate problems with the delay and advance terms. The resulting singularly perturbed parabolic convection-diffusion equation is solved by utilizing the implicit Euler method for the temporal discretization and finite difference method for the spatial discretization on a uniform mesh. The proposed numerical scheme is shown to be an ε-uniformly convergent accurate of the first order in time and second-order in space directions. The efficiency of the scheme is proved by some numerical experiments and by comparing the results with other results. It has been found that the proposed numerical scheme gives a more accurate approximate solution than some available numerical methods in the literature.

Analysis of Transient Magnetic Diffusion in a High-Temperature Superconductor Tube (고온 초전도체 관에서의 과도 자기확산 해석)

  • 설승윤;정성기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.991-996
    • /
    • 2002
  • Transient magnetic diffusion process in a melt-cast BSCCO-2212 tube is analyzed by an analytical method. The transient diffusion partial differential equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical state model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper.