• 제목/요약/키워드: partial autocorrelation coefficient

검색결과 6건 처리시간 0.015초

잡음 환경에서의 유도 전동기 고장 검출 및 분류를 위한 강인한 특징 벡터 추출에 관한 연구 (A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance)

  • 황철희;강명수;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.187-196
    • /
    • 2011
  • 유도 전동기는 항공 산업, 자동차 산업 등의 산업 현장에서 중요한 역할을 하고 있으며, 이러한 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이에 본 논문에서는 정상 및 각종 비정상 상태의 유도 전동기 진동 신호에 대해 부분 자기 상관(partial autocorrelation, PARCOR) 계수, 로그 스펙트럼 파워(log spectrum powers, LSP), 캡스트럼 계수의 평균값(cepstrum coefficients mean, CCM), 멜 주파수 캡스트럼 계수(mel-frequency cepstrum coefficient, MFCC)의 네 가지 특징 벡터를 신경 회로망의 입력으로 사용하여 유도 전동기의 고장을 검출하고 분류하였다. 고장 분류를 위한 최적의 특징 벡터를 찾기 위해 추출하는 특징의 수를 2에서 20으로 바꾸어 가며 분류 성능을 평가한 결과 CCM을 제외한 나머지의 경우 5~6의 특징만으로 분류 정확도가 거의 100%에 가까운 결과를 보였다. 또한 본 논문에서는 실제 산업 현장에서 진동 신호 취득 시 포함될 수 있는 잡음을 고려하여 취득한 신호에 백색 잡음(white Gaussian noise)을 인위적으로 추가하여 실험한 결과 LSP, PARCOR, MFCC 순으로 잡음 환경에 강인한 특징 벡터임을 확인할 수 있었다.

ZCR과 PARCOR 계수를 이용한 숫자음성 인식 (Spoken digit recognition Using the ZCR and PARCOR Coefficient)

  • 김학윤
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1985년도 학술발표회 논문집
    • /
    • pp.75-78
    • /
    • 1985
  • 본 연구는 시간 영역의 parament를 이용하여 한국어 숫자음(영, 일, 이, 삼, 사, 오, 육, 칠, 팔, 구)을 인식했다. 입력 음성 신호 X(n)의 Beginning Point와 Ending point를 ZCR(Zero-crossing Rate), Magnitude, Energy, Autocorrelation을 이용 Beginning point와 Ending point를 구하고 자음부의 인식은 위 계수들을 이용하여 행했다. 또, 유성음 부분에서는 PARCOR(Partial Autocorrelation), LPC(Linear Predictive Coding)를 이용 모음부와 유성자음을 인식하여 모음을 6개 부류(ㅏ, ㅑ, ㅗ, ㅜ, ㅠ, ㅣ)로 구분 인식했다. 이 방법에 의하면 입력 음성 신호 X(n)의 B.P(Beginning Point)와 E.P(Ending Point)를 쉽게 추출 가능하며 또한 각 Parameter를 이용하여 94.4%의 인식율을 얻었다.

  • PDF

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.

음소에 의한 한국어 음성의 분석과 인식 (The Analysis and Recognition of Korean Speech Signal using the Phoneme)

  • 김영일;이건기;이문수
    • 한국음향학회지
    • /
    • 제6권2호
    • /
    • pp.38-47
    • /
    • 1987
  • 한국어는 발음상의 특징과 구조에 의해서 음소철로 분리가 가능하므로, 한국어를 자음 음소, 모음 음소, 받침 음소로 나눌 수 있다. 분리된 각각의 음소들을 편자기 상관계수를 이용하여 분석하였는데, 이 때 예측 차수는 15차이다. 분석 실험에서 동일한 음소들은 그 특성이 거의 유사하였다. 한국어 단음 675개를 자음 음소. 모음 음소, 받침 음소로 각각 분리하여 인식한 결과 각각 $85.0(\%)$, $90.7(\%)$, $85.5(\%)$의 인식률을 얻었고, 이 음소들을 결합시킨 단음에서는 $72.1(\%)$의 인식률을 얻었다. 따라서, 이와 같은 방법을 이용하여 한국어 단음을 작은 데이터 양으로 처리 시간을 단축시킬 수 있고, 더 나아가 한국어의 모든 단음, 단어, 문장 둥을 인식할 수 있다.

  • PDF

환경서비스업과 물류서비스업의 예측 및 인과성 검정 (Prediction and Causality Examination of the Environment Service Industry and Distribution Service Industry)

  • 선일석;이충효
    • 유통과학연구
    • /
    • 제12권6호
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose - The world now recognizes environmental disruption as a serious issue when regarding growth-oriented strategies; therefore, environmental preservation issues become pertinent. Consequently, green distribution is continuously emphasized. However, studying the prediction and association of distribution and the environment is insufficient. Most existing studies about green distribution are about its necessity, detailed operation methods, and political suggestions; it is necessary to study the distribution service industry and environmental service industry together, for green distribution. Research design, data, and methodology - ARIMA (auto-regressive moving average model) was used to predict the environmental service and distribution service industries, and the Granger Causality Test based on VAR (vector auto regressive) was used to analyze the causal relationship. This study used 48 quarters of time-series data, from the 4th quarter in 2001 to the 3rd quarter in 2013, about each business type's production index, and used an unchangeable index. The production index about the business type is classified into the current index and the unchangeable index. The unchangeable index divides the current index into deflators to remove fluctuation. Therefore, it is easy to analyze the actual production index. This study used the unchangeable index. Results - The production index of the distribution service industry and the production index of the environmental service industry consider the autocorrelation coefficient and partial autocorrelation coefficient; therefore, ARIMA(0,0,2)(0,1,1)4 and ARIMA(3,1,0)(0,1,1)4 were established as final prediction models, resulting in the gradual improvement in every production index of both types of business. Regarding the distribution service industry's production index, it is predicted that the 4th quarter in 2014 is 114.35, and the 4th quarter in 2015 is 123.48. Moreover, regarding the environmental service industry's production index, it is predicted that the 4th quarter in 2014 is 110.95, and the 4th quarter in 2015 is 111.67. In a causal relationship analysis, the environmental service industry impacts the distribution service industry, but the distribution service industry does not impact the environmental service industry. Conclusions - This study predicted the distribution service industry and environmental service industry with the ARIMA model, and examined the causal relationship between them through the Granger causality test based on the VAR Model. Prediction reveals the seasonality and gradual increase in the two industries. Moreover, the environmental service industry impacts the distribution service industry, but the distribution service industry does not impact the environmental service industry. This study contributed academically by offering base line data needed in the establishment of a future style of management and policy directions for the two industries through the prediction of the distribution service industry and the environmental service industry, and tested a causal relationship between them, which is insufficient in existing studies. The limitations of this study are that deeper considerations of advanced studies are deficient, and the effect of causality between the two types of industries on the actual industry was not established.

ARIMA 모델을 이용한 항공운임예측에 관한 연구 (A Study of Air Freight Forecasting Using the ARIMA Model)

  • 서상석;박종우;송광석;조승균
    • 유통과학연구
    • /
    • 제12권2호
    • /
    • pp.59-71
    • /
    • 2014
  • Purpose - In recent years, many firms have attempted various approaches to cope with the continual increase of aviation transportation. The previous research into freight charge forecasting models has focused on regression analyses using a few influence factors to calculate the future price. However, these approaches have limitations that make them difficult to apply into practice: They cannot respond promptly to small price changes and their predictive power is relatively low. Therefore, the current study proposes a freight charge-forecasting model using time series data instead a regression approach. The main purposes of this study can thus be summarized as follows. First, a proper model for freight charge using the autoregressive integrated moving average (ARIMA) model, which is mainly used for time series forecast, is presented. Second, a modified ARIMA model for freight charge prediction and the standard process of determining freight charge based on the model is presented. Third, a straightforward freight charge prediction model for practitioners to apply and utilize is presented. Research design, data, and methodology - To develop a new freight charge model, this study proposes the ARIMAC(p,q) model, which applies time difference constantly to address the correlation coefficient (autocorrelation function and partial autocorrelation function) problem as it appears in the ARIMA(p,q) model and materialize an error-adjusted ARIMAC(p,q). Cargo Account Settlement Systems (CASS) data from the International Air Transport Association (IATA) are used to predict the air freight charge. In the modeling, freight charge data for 72 months (from January 2006 to December 2011) are used for the training set, and a prediction interval of 23 months (from January 2012 to November 2013) is used for the validation set. The freight charge from November 2012 to November 2013 is predicted for three routes - Los Angeles, Miami, and Vienna - and the accuracy of the prediction interval is analyzed using mean absolute percentage error (MAPE). Results - The result of the proposed model shows better accuracy of prediction because the MAPE of the error-adjusted ARIMAC model is 10% and the MAPE of ARIMAC is 11.2% for the L.A. route. For the Miami route, the proposed model also shows slightly better accuracy in that the MAPE of the error-adjusted ARIMAC model is 3.5%, while that of ARIMAC is 3.7%. However, for the Vienna route, the accuracy of ARIMAC is better because the MAPE of ARIMAC is 14.5% and the MAPE of the error-adjusted ARIMAC model is 15.7%. Conclusions - The accuracy of the error-adjusted ARIMAC model appears better when a route's freight charge variance is large, and the accuracy of ARIMA is better when the freight charge variance is small or has a trend of ascent or descent. From the results, it can be concluded that the ARIMAC model, which uses moving averages, has less predictive power for small price changes, while the error-adjusted ARIMAC model, which uses error correction, has the advantage of being able to respond to price changes quickly.