• 제목/요약/키워드: partial Bayes factor

검색결과 5건 처리시간 0.018초

PARTIAL INTRINSIC BAYES FACTOR

  • Joo Y.;Casella G.
    • Journal of the Korean Statistical Society
    • /
    • 제35권3호
    • /
    • pp.261-280
    • /
    • 2006
  • We have developed a new model selection criteria, the partial intrinsic Bayes factor, which is designed for cases when we select a model among a small number of candidate models. For example, we can choose only a few candidate models after exploring scatter plots. By simulation study, we have showed that PIBF performs better than AIC, BIC and GCV.

On Flexible Bayesian Test Criteria for Nested Point Null Hypotheses of Multiple Regression Coefficients

  • Jae-Hyun Kim;Hea-Jung Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.205-214
    • /
    • 1996
  • As flexible Bayesian test criteria for nested point null hypotheses of multiple regression coefficients, partial and overall Bayes factors are introduced under a class of intuitively meaningful prior. The criteria lead to a simple method for considering different prior beliefs on the subspaces that constitute a partition of the coefficient parameter space. A couple of tests are suggested based on the criteria. It is shown that they enable us to obtain pairwise comparisons of hypotheses of the partitioned subspaces. Through a Monte Carlo simulation, performance of the tests based on the criteria are compared with the usual Bayesian test (based on Bayes factor)in terms of their respective powers.

  • PDF

Bayesian Analysis of a New Skewed Multivariate Probit for Correlated Binary Response Data

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제30권4호
    • /
    • pp.613-635
    • /
    • 2001
  • This paper proposes a skewed multivariate probit model for analyzing a correlated binary response data with covariates. The proposed model is formulated by introducing an asymmetric link based upon a skewed multivariate normal distribution. The model connected to the asymmetric multivariate link, allows for flexible modeling of the correlation structure among binary responses and straightforward interpretation of the parameters. However, complex likelihood function of the model prevents us from fitting and analyzing the model analytically. Simulation-based Bayesian inference methodologies are provided to overcome the problem. We examine the suggested methods through two data sets in order to demonstrate their performances.

  • PDF

Bayesian test for the differences of survival functions in multiple groups

  • Kim, Gwangsu
    • Communications for Statistical Applications and Methods
    • /
    • 제24권2호
    • /
    • pp.115-127
    • /
    • 2017
  • This paper proposes a Bayesian test for the equivalence of survival functions in multiple groups. Proposed Bayesian test use the model of Cox's regression with time-varying coefficients. B-spline expansions are used for the time-varying coefficients, and the proposed test use only the partial likelihood, which provides easier computations. Various simulations of the proposed test and typical tests such as log-rank and Fleming and Harrington tests were conducted. This result shows that the proposed test is consistent as data size increase. Specifically, the power of the proposed test is high despite the existence of crossing hazards. The proposed test is based on a Bayesian approach, which is more flexible when used in multiple tests. The proposed test can therefore perform various tests simultaneously. Real data analysis of Larynx Cancer Data was conducted to assess applicability.

자동차보험 신뢰도 적용에 대한 베이지안 추론 방식 연구 (A study of Bayesian inference on auto insurance credibility application)

  • 김명준;김영화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.689-699
    • /
    • 2013
  • 본 연구는 가격 경쟁으로 인하여 최근 들어 요율 세분화가 심화되고 있는 자동차보험 시장에서, 부분 신뢰도의 적용 대상에 대한 경험적 사전분포 (empirical prior distribution) 함수 또는 무정보적 사전분포 (noninformative prior distribution) 정보의 가정을 통한 신뢰도 산출 방식에 대하여 살펴보았다. 요율 세분화의 확대로 가격 산출 단위의 수가 증가될 경우, 부분 신뢰도의 적용 대상은 점차 증가되게 될 것으로 판단되기 때문에, 기존에 제시된 신뢰도 적용 방식을 베이지안 프레임에서 적용, 추론함으로써 보다 다양하고 정교한 방식으로 그 활용 범위를 넓히고자 한다. 즉, 경험적으로 사용되는 사전 분포함수 또는 무정보적 사전 정보를 통하여 적절한 사후분포 (posterior distribution)함수를 도출하고 오차를 최소화하는 베이즈 통계량을 적용한 신뢰도를 추정하여 적용함으로써, 위험도 예측에 있어 기존에 제시된 방법과 비교하여 그 효용성을 입증하고자 한다. 현재 가장 많이 활용되는 제곱근 법칙 (square root rule)의 신뢰도 추정 방식에 베이지안 추론에서 도출된 통계량을 반영한 결과를 분석하여 실질적인 위험도에 수렴하는 수준을 비교하게 된다. 이는 이론적으로 위험도 예측에서 오차를 줄이는 방식에 대한 대안 제시와 더불어 신뢰도 적용 방식에 대한 추가적인 활용 대안을 보험업계에 제시함으로써 요율 세분화로 인한 부분 신뢰도 적용방식에 대한 그 이해와 활용의 폭을 넓히고자 한다.