• Title/Summary/Keyword: part-based representation

Search Result 211, Processing Time 0.027 seconds

Insertion/Deletion algorithms on M-heap with an array representation (배열 표현을 이용한 M-힙에서 삽입/삭제 알고리즘)

  • Jung Hae-Jae
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.261-266
    • /
    • 2006
  • Priority queues can be used in applications such as scheduling, sorting, and shortest path network problem. Fibonacci heap, pairing heap, and M-heap are priority queues based on pointers. This paper proposes a modified M-heap with an way representation, called MA-heap, that resolves the problem mentioned in [1]. The MA-heap takes O(1) amortized time and O(logn) time to insert an element and delete the max/min element, respectively. These time complexities are the same as those of the M-heap. In addition, it is much easier to implement an MA-heap than a heap proposed in [5] since it is based on the simple traditional heap.

Feedback Error Learning and $H^{\infty}$-Control for Motor Control

  • Wongsura, Sirisak;Kongprawechnon, Waree;Phoojaruenchanachai, Suthee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1981-1986
    • /
    • 2004
  • In this study, the basic motor control system had been investigated. The controller for this study consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such a tracking perfect, an adaptive law based on Feedback Error Learning (FEL) is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The theory in $H^{\infty}$-Control is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

Development of Feature Based Modeller Using Boundary Representation (경계표현법을 기본으로 한 특징형상 모델러의 개발)

  • 홍상훈;서효원;이상조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2446-2456
    • /
    • 1993
  • By virtue of progress of computer science, CAD/CAM technology has been developed greatly in each area. But the problems in the integration of CAD/CAM are not yet solved completely. The reason is that the exchange of data between CAD and CAM is difficult because the domains of design and manufacturing are different in nature. To solve this problem, a feature based modeller is developed in this study, which makes it possible to communicate between design and manufacturing through features. The modeller has feature, the concept of semi-bounded plane is introduced, and implemented as a B-rep sheet model using half-edge data structure. The features are then created on a part by local modification of the boundary on a part based on feature template information. This approach generalizes the modelling of features in a geometry model.

an Automatic Transformation Process for Generating Multi-aspect Social IoT Ontology (다면적 소셜 IoT 도메인 온톨로지 생성을 위한 온톨로지 스키마 변환 프로세스)

  • Kim, SuKyung;Ahn, KeeHong;Kim, GunWoo
    • Smart Media Journal
    • /
    • v.3 no.3
    • /
    • pp.20-25
    • /
    • 2014
  • This research proposes a concept of multi-aspect Social IoT platform that enables human, machine and service to communicate smoothly among them, as well as a means of an automatic process for transforming exiting domain knowledge representation to generic ontology representation used in the platform. Current research focuses on building a machine-based service interoperability using sensor ontology and device ontology. However, to the best of our knowledge, the research on building a semantic model reflecting multi-aspects among human, machine, and service seems to be very insufficient. Therefor, in the research we first build a multi-aspect ontology schema to transform the representation used in each domain as a part of IoT into ontology-based representation, and then develop an automatic process of generating multi-aspect IoT ontology from the domain knowledge based on the schema.

SLA를 이용한 신속 시작작업에서 최적 성형방향의 결정

  • 허정훈;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.552-558
    • /
    • 1995
  • Stereolithography is a process used to rapidly produce polymer components directly from a computer-representation of the part. There are several considerations to be made for the efficient use of te process. Especially, the build-up orientation of part critically affect to the part accuracy, total build time and the volume of support structures. Te purpose of this study is to determine the optimal build-up part orientation for the SLA process with improving part accuracy, minimizing total build time, and the volume of supprot structures. The first factor is related to the area of surfaces which have staircase protrusions after solidification, the second factor is related to the total number of layers, and the third factor is related to the area of the surfaces which need to be supported with support structures. An algorithm is developed to calculate the staircase area with quantifying the process planning errors that the volume of materials is supposed to be removed or added to the part, and the optimal layer thickness for the SLA system whichcan hadle the variable layer thickness in different orientations achieved by rotating the given part to the specified finite directions. So the optimal part orientation is determined based on the user's selections of primary criterion and the optimal thickness of layers is calculated at any part orientations.

Determination of Optimal Build-up Direction for Stereolithographic Rapid Prototyping (SLA를 이용한 신속 시작작업에서 최적 성형방향의 결정)

  • Hur, Junghoon;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-173
    • /
    • 1996
  • Stereolithography is a process used to rapidly produce polymer components directly form a computer representation of the part. There are several considerations to be made for the efficient use of the process. Especially, the build-up orientation of part critically affects the part accuracy, total build time and the volume of support structures. The purpose of tis study is to determine the optimal build-up part orientation for the SLA process with improving part accuracy, and minimizing total build time and the volume of support structures. The forst factor is related to the area of surfaces whioch have staircase protrusions after solidification, the second factor is related to the total number of layers, and the third factor is related to the area of the surfaces which need to be supported with support structures. An algorithm is developed to calculate the staircase area, quantifying the process errors by the volume of materials supposed to be removed or added to the part, and the optimal layer thickness for the SLA system which can handle the variable layer thickness. So the optima l part orientation is determined based on the user's selections of primary criter- ion and the optimal thickness of layers is calculated at any part orientations.

  • PDF

A Study on the Expression of Traditionality in the Contemporary House base on Schema (스키마에 의한 현대주택의 전통성 표현에 관한 연구)

  • Lee, Wan-Geon;Jung, Rye-Hwa
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.5 s.58
    • /
    • pp.60-67
    • /
    • 2006
  • An architecture is a result from representation of design knowledge by architect's creative thinking, and operated only in his internal organization system. Design knowledge based upon the experience that they have achieved in the past as well as the informations they have accumulated over the time. In this point of view, the Schema that formed by problems settlement and process repetitions for the best conclusion, not only play an important part in the designer's thinking system about a specific problem but also appeared by distinctive features. This research looks to achieve a new design method by finding out how architects express traditionality in the contemporary house through schema. This research analyze contemporary house built in seoul of 1990's. The result are as followings. First, Schema is a 'frame' that already exist in the architect's thinking, will make a good guide about express the traditionality. Second, We found out several distinctive characters in the form and the space. The form is divided in five types. It is an condensed form of roof image, the metamorphosis of form grammar, the change of part details, the representation of design principle and the directly expression. Lastly, In the space, it is the borrow of the connection method of inside and external space, the three parts composition of the space, the adaptation of 'Madang' and the Independent composition of the space due to 'Chae'

The Knowledge Definition Language and Knowledge Creation for Knowledge Base Construction (지식베이스 구축을 위한 지실정의 언어와 지식생성)

  • 김창화;백두권
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.2
    • /
    • pp.27-42
    • /
    • 1989
  • REA (Restricted Entity Aspect) model is a knowledge representation model to classify the aspect type, the EA model component, into five aspects (IS-A-aspect, A-PART-OF aspect, attribute aspect, role aspect, and operation aspect). EATPS, the knowledge representation system, consists of user interface module, knowledge creation module, instance management module, schema management module, and integrity checking module. EATPS creates and manages interactively REA model based knowledge base. This paper shows the structure and functions of EATPS, the design and interactive construction of the knowledge definition language EAKDL, the functions and algorithm of class creation module, and the functions and algorithm of instance creation module to include inheritance inference mechanism.

  • PDF

Development of Manufacturing Ontology-based Quality Prediction Framework and System : Injection Molding Process (제조 온톨로지 기반 품질예측 프레임워크 및 시스템 개발 : 사출성형공정 사례)

  • Lee, Kyoung-Hun;Kang, Yong-Shin;Lee, Yong-Han
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.40-51
    • /
    • 2012
  • Today, many manufacturing companies realize that collaboration is crucial for their survival. Especially, in the perspective of quality, the importance of collaboration is emphasized because economic loss increases exponentially while defective parts go through the process in supply chain. However, the manufacturing companies are facing two main difficulties in implementing collaborative relationships with their suppliers. First, it is difficult for the suppliers to produce reliable products due to their obsolete facilities. The problem gets worse for second- or third-tire vendors. Second, the companies experience the lack of universally understandable set of terminology and effective methodologies for knowledge representation. Ontology is one of the best approaches to expressing and processing a domain knowledge. In this paper, we propose the manufacturing ontology-based quality prediction framework to represent and share the knowledge of industrial environment and to predict product quality in manufacturing processes. In addition, we develop the ontology-based quality prediction system based on the proposed framework. We carried out a series of experiments for an injection molding process at an automotive part supplier. The experimental results demonstrated that the proposed framework and system can be successfully applicable in manufacturing industry.