• Title/Summary/Keyword: part shape

Search Result 2,558, Processing Time 0.029 seconds

A Study on the Changing Pattern of the Petiole's Vascular Branch of Some Acer Species (단풍나무속(屬) 수종(數種)의 엽병(葉柄) 유관속지(維管束枝) 변화형(變化型)에 관한 연구(硏究))

  • Park, Kwang Woo;Kim, Sam Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.73 no.1
    • /
    • pp.21-32
    • /
    • 1986
  • This study was done to classify 15 species in the genus Acer through tracking of the changing shape of the vascular branch from the base part to the terminal part of petiole by the anatomical method. The basic vascular branches were 3 ea, except A. mandshuricum 3-4 ea. The vascular bundle was separated, moved and connected from the base part to the terminal part of petiol, the number of separated vascular branch was 11-32 ea., the number of connected vascular branch was 0-17 ea., and the ratio of the separated vascular branch to the connected was 0.00-8.00. The maximum number of vascular branch in No, 39 of cross section part was observed in 12 species; A. ginnala and A. buergerianum were No. 11, A. truncatum and A. platanoides were No. 13, A. saccharium was No. 26. The number of the connected vascular branches with the main vascular branch were 0-6, while the number of the separated vascular branch were 0-7. On the ratio of separation to connection of the base vascular branch; "A", "B" and "C", the symmetrical shapes on the basis of "B" were A>BC, AB>C shape. The classical groups by the development of main vascular branch formation were obtained 7 groups of "a" through "g" shape. Especially, A. negundo and A. saccharinum were shown to have central vascular branches with unique changing patterns.

  • PDF

Structural Design of a Container Crane Part-Jaw, Using Metamodels (메타모델을 이용한 크레인 부품 조의 구조설계)

  • Song, Byoung-Cheol;Bang, Il-Kwon;Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Rail clamps are mechanical components installed to fix the container crane to its lower members against wind blast or slip. According to rail clamps should be designed to survive harsh wind loading conditions. In this study, a jaw structure, which is a part of a wedge-typed rail clamp, is optimized with respect to its strength under a severe wind loading condition. According to the classification of structural optimization, the structural optimization of a jaw is included in the category of shape optimization. Conventional structural optimization methods have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome the difficulties, the metamodel using Kriging interpolation method is introduced to replace the true response by an approximate one. This research presents the shape optimization of a jaw using iterative Kriging interpolation models and a simulated annealing algorithm. The new Kriging models are iteratively constructed by refining the former Kriging models. This process is continued until the convergence criteria are satisfied. The optimum results obtained by the suggested method are compared with those obtained by the DOE (design of experiments) and VT (variation technology) methods built in ANSYS WORKBENCH.

  • PDF

A Study on Body Shapes from Classification of Plus-Sized Women (Plus-size 여성의 상반신 체형연구)

  • Sung Ok-Jin;Ha Hee-Jung
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.2 s.101
    • /
    • pp.101-111
    • /
    • 2006
  • The purpose of this research is to define body shapes of Plus-sized women at ages between 21 and 69 whose satisfied the Plus-sized judgment criteria took part in this study. This research also classifies different body types, and provides basic data for designing prototypes according to each body type. Based on factor analysis of the measured data, nine key factors are grouped. And four different body types are classified based on the cluster analysis using factor marks. Type 1 refers to those who are tall and characterized by 'Y' body shape when looked from the front. Looking from the side, this type is comparatively balanced obese type which has flat breast and abdomen, and which has a jutting back and buttocks. Type 2 refers to those who are the shortest of all the obese with 'X' front. This type is Sway-back shape which has jutting back and abdomen but flat buttocks when looked from the side. Type 3 is characterized by 'H' body shape when looked from the front. This type is Pway-back shape which has flat back, abdomen and buttocks when looked from the side. The prominent breast part of this type is the most outstanding figure. Type 4 is characterized by 'X' when looked from the front. This type has a jutting waist and prominent buttocks when looked from the side.

Fatigue Properties of Ti-Ni Shape Memory Alloy Wire Welded by Nd: YAG Laser

  • Kim, Y.S.;Kim, J.D.;Kil, B.L.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • The welded specimens were made by butt welding of the 2 wires of 50mm length using the pulsed YAG laser. The laser welded wires were tested for investigating the shape memory effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was Investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

The Study on the Diameter Ratio of the Artery-PTFE Anastomosis for the Optimized Deformed Shape (변형후 형상의 최적화를 위한 동맥과 PTFE 문합의 직경비 연구)

  • 이성욱;심재준;한근조
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • In this paper we introduced optimized deformed shape to prevent the blood vessel disease caused by the discord of deformed shape in the end-to-end anastomosis. This study considered the preliminary deformed shape induced by suture in the anastomosis of artery and PTFE, artificial blood vessel, with different diameters. Then we analyzed the final deformed shape of the anastomotic part under the systolic blood pressure. 120mmHg(16.0kPa). The final deformed shape of the anstomotic part was analyzed with respect to the change of initial diameter ratio(R$_{I}$) and the PTFE thickness. Equivalent and circumferential stresses induced by the systolic blood pressure in the anastomosis were also analyzed with respect to the initial diameter ratio(R$_{I}$). The results obtained were as follows : 1. Considering the preliminary deformed shape induced by suture and the systolic pressure in the anastomosis, not intimal hyperplasia, the optimal initial diameter ratio(R$_{I}$) was 1.073. 2. As the initial diameter ratio(R$_{I}$) became larger, higher equivalent and circumferential stresses were induced. And all the maximum stresses occurred on the side of PTFE 0.4mm apart from the anastomosis.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 3 - Effect of Groove Shape (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제3보 - 그루브 형상의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.193-198
    • /
    • 2020
  • Fluid film bearings are among the best devices used for overcoming friction and reducing wear. Surface texturing is a new surface treatment technique used for processing grooves and dimples on the lubricated surface, and it helps to minimize friction further and improve the wear resistance. In several studies, parallel surfaces, such as thrust bearings and mechanical face seals, have been investigated, but most sliding bearings have a convergent film shape. This paper presents the third part of a recent study and focuses on the effect of the groove shape on the lubrication performance of inclined slider bearings, following the two previous papers on the effects of the groove position and depth. We adopted the continuity and Navier - Stokes equations to conduct numerical analyses using FLUENT, which is a commercial computational fluid dynamics code. The groove shape adopted in the numerical analysis is rectangular and triangular, and its depth is varied. The results show that the streamlines, pressure distributions, and groove shape significantly influence the lubrication performance of the inclined slider bearing. For both shapes, the load-carrying capacity (LCC) is maximum near the groove depth, where vortices occur. In the shallow grooves, the LCC of the rectangular shape is higher, but in deeper grooves, that of the triangular shape is higher. The deeper the rectangular groove, the higher the decrease in the frictional force. The results of this study can be used as design data for various sliding bearings.

Crystal Growth of LiNbO3 for SAW Devices (SAW Device 응용을 위한 LiNbO3 단결정 성장)

  • 최종건;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.78-82
    • /
    • 1988
  • Good quality LiNbO3 single crystals which can be applied to SAW devices, were grown by Czochralski method. It was observed that the gas-bubbles were concentrated in ring shape at the outer part of grown crystals, and this anomaly was illustrated by modeling the mechanism of gas-bubble entrapment according to the melt flow pattern in the crucible. And this mechanism was also encertained by observation of solid-liquid interface shape of grown crystals. The optimal condition for good quality crystals was known that the solid-liquid interface shape was slightly concave.

  • PDF

PENALIZED APPROACH AND ANALYSIS OF AN OPTIMAL SHAPE CONTROL PROBLEM FOR THE STATIONARY NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • This paper is concerned with an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. by introducing an artificial compressibility term to relax the incompressibility constraints, we take the penalty method. The existence of optima solutions for the penalized problem will be shown. Next, by employing Lagrange multipliers method and the material derivatives, we derive the shape gradient for the minimization problem of the shape functional which represents the viscous drag.

  • PDF

Mathematical Representation of Geometric Tolerances : Part 1 (기하 공차의 수학적 표현 : 1편)

  • Park, Sangho;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.78-89
    • /
    • 1996
  • Every mechanical component is fabricated with the variations in its size and shape, and the allowable range of the variation is specified by the tolerance in the design stage. Geometric tolerances specify the size or the thickness of each shape entity itself or its relative position and orientation with respect to datums. Since the range of shape variation can be represented by the variation of the coordinate system attached to the shape, the transformation matrix of the coordinate system would mathematically express the range of shape variation if the interval numbers are inserted for the elements of the transformation matrix. For the shape entity specified by the geometric tolerance with reference to datums, its range of variation can be also derived by propagating the transformation matrices composed of interval numbers. The propagation depends upon the order of precedence of datums.

  • PDF

Experimental Study on the Deep Drawing Process for L-shape Cross Section (L형 단면의 ?드로잉 가공에 대한 실험적 연구)

  • 김상진;양대호;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.281-287
    • /
    • 1996
  • Two kinds of blank shapes optimum and square are adopted to investigate formability. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup depth and strain distribution are measured experimentally for the products of the two kinds of blank shapes which are optimum and square. it is confirmed that deeper cup without severe thickness reduction can be obtained from the optimum shape.

  • PDF