Since the widespread adoption of deep-learning and related distributed representation, there have been substantial advancements in part-of-speech (POS) tagging for many languages. When training word representations, morphology and shape are typically ignored, as these representations rely primarily on collecting syntactic and semantic aspects of words. However, for tasks like POS tagging, notably in morphologically rich and resource-limited language environments, the intra-word information is essential. In this study, we introduce a deep neural network (DNN) for POS tagging that learns character-level word representations and combines them with general word representations. Using the proposed approach and omitting hand-crafted features, we achieve 90.47%, 80.16%, and 79.32% accuracy on our own dataset for three morphologically rich languages: Uyghur, Uzbek, and Kyrgyz. The experimental results reveal that the presented character-based strategy greatly improves POS tagging performance for several morphologically rich languages (MRL) where character information is significant. Furthermore, when compared to the previously reported state-of-the-art POS tagging results for Turkish on the METU Turkish Treebank dataset, the proposed approach improved on the prior work slightly. As a result, the experimental results indicate that character-based representations outperform word-level representations for MRL performance. Our technique is also robust towards the-out-of-vocabulary issues and performs better on manually edited text.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.145-150
/
1999
본 논문에서는 한국어 자연어 정보처리 기술 표준화를 위한 형태소 분석기 및 품사 태거 평가 대회(MATEC99)에 참여한 고려대학교의 형태소 분석기, 품사 태거, 그리고 명사 추출기를 설명하고 평가 결과를 기술한다. 형태소 분석기는 입력된 어절을 우에서 좌로 분석하며 각 상태에 대한 예측 정보를 활용하여 불필요한 분석 후보에 대한 탐색을 수행하지 않도록 한다. 품사 태거로는 띄어쓰기를 고려한 형태소 품사 2-그램 확률과 띄어쓰기를 고려한 형태소 어휘-품사 3-그램 어휘 확률을 이용하는 결합 독립 모형을 사용한다. 고속 명사 추출기는 고속의 FST 사전과 한국어 특성을 반영한 휴리스틱을 이용한다.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.76-86
/
1999
본 논문에서는 포항공과대학교 지식 및 언어공학연구실에서 개발한 한국어 형태소 분석기 및 품사 태거에 대하여 설명한다. 먼저, 음운 축약 현상이 많은 한국어에 적합한 음절단위 CYK 알고리즘을 제안한다. 그리고, 복합명사 및 복합동사에 대한 처리와 실제 문서에서 빈번히 발생하는 띄어쓰기 오류 처리에 대한 방법론을 설명하고 미등록어에 대한 처리 방안을 제시한다. 품사 태거에서 사용된 방법론과 태그 집합간 매핑, 그리고 명사 추출기에 대해 기술한 후 마지막으로 MATEC'99를 위한 준비과정에서 발생한 표준안과 우리 시스템 사이의 차이점을 나열 및 분석하고 간단히 MATEC'99를 통해 얻은 실험 결과와 평가를 하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.236-239
/
2011
품사 태깅에서 오류는 같은 가중치를 가지는 것으로 간주되어 왔다. 하지만 품사 태깅의 결과를 활용하는 다른 자연어 처리 기술에 태깅 오류가 얼마나 영향을 미칠 수 있는가에 따라 품사 태깅 시 발생하는 오류가 가지는 가중치를 다르게 보아야 한다. 심각한 오류는 이를 활용하는 자연어 처리 기술의 성능 저하를 크게 야기하지만, 사소한 오류는 성능의 저하를 야기하지 않거나 그 영향이 미미하다. 본 논문에서는 품사 태깅 시, 전체적인 성능을 유지하면서 심각한 오류를 줄이는 것을 목표로 한다. 이를 위해 두 가지 점진적 손실 함수(gradient loss function)를 제안한다. 제안한 손실 함수는 심각한 오류에 사소한 오류보다 더 큰 가중치를 줌으로써 품사 태깅 모델이 심각한 오류에 더 집중하여 성능을 최적화하도록 한다. 실험에서 제안한 손실 함수를 활용한 태깅 모델은 기존의 방법에 비해 심각한 오류를 효과적으로 줄일 뿐만 아니라 전체적으로 더 높은 정확도를 보였다.
A multichannel smart sound sensor capable to detect and identify sound events in noisy conditions is presented in this paper. Sound information extraction is a complex task and the main difficulty consists is the extraction of highlevel information from an one-dimensional signal. The input of smart sound sensor is composed of data collected by 5 microphones and its output data is sent through a network. For a real time working purpose, the sound analysis is divided in three steps: sound event detection for each sound channel, fusion between simultaneously events and sound identification. The event detection module find impulsive signals in the noise and extracts them from the signal flow. Our smart sensor must be capable to identify impulsive signals but also speech presence too, in a noisy environment. The classification module is launched in a parallel task on the channel chosen by data fusion process. It looks to identify the event sound between seven predefined sound classes and uses a Gaussian Mixture Model (GMM) method. Mel Frequency Cepstral Coefficients are used in combination with new ones like zero crossing rate, centroid and roll-off point. This smart sound sensor is a part of a medical telemonitoring project with the aim of detecting serious accidents.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.268-272
/
2016
영어권 언어가 어절 단위로 품사를 부여하는 반면, 한국어는 굴절이 많이 일어나는 교착어로서 데이터부족 문제를 피하기 위해 형태소 단위로 품사를 부여한다. 이러한 구조적 차이 안에서 한국어에 적합한 품사 태깅 단위는 지속적으로 논의되어 왔으며 지금까지 음절, 형태소, 어절, 구가 제안되었다. 본 연구는 어절 단위로 태깅함으로써 야기되는 복잡한 품사 태그와 데이터부족 문제를 해소하기 위해 어절에서 주요 실질 형태소와 주요 형식 형태소만을 뽑아 새로운 어절을 생성하고, 생성된 단순한 어절에 대해 CRF 태깅을 수행하였다. 실험결과 평가 말뭉치에서 미등록 어절 등장 비율은 9.22%에서 5.63%로 38.95% 감소시키고, 어절단위 정확도를 85.04%에서 90.81%로 6.79% 향상시켰다.
Useful It is very crucial to establish the learning environment with a creative technology for those who are going to learn English in terms of multimedia presentation. This kind of technologies make it possible for students to practice English suitable with their level and compatible with lesson plan. English grammar plays a leading role to study English as a second language for the language is required to master the structure, part of speech, and tense. The purpose of this study is to explore the a innovative English teaching and learning approach based on the multimedia presentation to teach English grammar with an effect for those students are studying English, when they are learning English grammar with power point or complex multimedia presentation.
In this paper, we were carried out experiments to apply parameter of voice analysis to measure changing characteristic articulator according to inhale the helium gas. The helium gas was used to overcome air embolism nitrogen gas to deal a fatal blow in body nitrogen gas by diver. However, the helium gas has been much trouble interpretation about abnormal voice of diver to cause squeaky voice of low articulation. Therefor, we was carried out experiments about pitch and spectrogram measurement, analysis based on to influence in acoustic organs before and after of inhaled helium gas.
Park, Young-C.;Kim, Nam-Il;Huh, Wook;Nam, Ki-Chun;Choi, Key-Sun
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.94-101
/
1997
한국어의 언어분석을 위한 가공코퍼스의 하나인 품사부착 코퍼스는 형태소 언어분석의 기초가 되는 자료로서 각종 언어분석 모델의 학습자료와 관측자료 또는 검증자료로서 중요한 역할을 한다. 품사부착 코퍼스의 구축은 많은 노력과 시간이 요구되는 어려운 작업이다. 기존의 구축방법은 자동 태거의 결과를 일일이 사람이 확인해 가면 오류를 발견하고 수정하는 단순 작업이었다. 이러한 단순 작업은 한번 수정된 자동태거의 반복적 오류, 미등록어에 의한 오류 들을 계속적으로 수정해야하는 비효율성을 내포하고 있었다. 본 논문에서는 HMM기반의 자동 태거를 사용하여 1차적으로 한국어 문서를 자동 태깅한다. 자동 태깅 결과로부터 규칙기반의 오류 수정을 추가적으로 행한다. 이렇게 구축된 결과를 사용자에게 제시하여 최종 오류를 수정하고 이를 앞으로의 태깅작업에 반영하는 품사부착 워크벤치에 대해 기술한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.7
/
pp.1531-1536
/
2011
We propose an automatic swearword filter system for online game chatting by using Support Vector Machines(SVM). We collected chatting sentences from online games and tagged them as normal sentences or swearword included sentences. We use n-gram syllables and lexical-part of speech (POS) tags of a word as features and select useful features by chi square statistics. Each selected feature is represented as binary weight and used in training SVM. SVM classifies each chatting sentence as swearword included one or not. In experiment, we acquired overall 90.4% of F1 accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.