• Title/Summary/Keyword: pareto-optimal

Search Result 244, Processing Time 0.029 seconds

A Study on the Economic Efficiency of Capital Market (자본시장(資本市場)의 경제적(經濟的) 효율성(效率性)에 관한 연구(硏究))

  • Nam, Soo-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.2 no.1
    • /
    • pp.55-75
    • /
    • 1986
  • This article is to analyse the economic efficiency of capital market, which plays a role of resource allocation in terms of financial claims such as stock and bond. It provides various contributions to the welfare theoretical aspects of modern capital market theory. The key feature that distinguishes the theory described here from traditional welfare theory is the presence of uncertainty. Securities has time dimensions and the state and outcome of the future are really uncertain. This problem resulting from this uncertainty can be solved by complete market, but it has a weak power to explain real stock market. Capital Market is faced with the uncertainity because it is a kind of incomplete market. Individuals and firms in capital market made their consumption-investment decision by their own criteria, i. e. the maximization of expected utility form intertemporal consumption and the maximization of the market value of firm. We noted that allocative decisions that had to be made in the economy could be naturally subdivided into two groups. One set of decisions concerned the allocation of first-period resources among consumption $C_i$, investment in risky firms $I_j$, and riskless investment M. The other decisions concern the distribution among individuals of income available in the second period $Y_i(\theta)$. Corresponing to this grouping, the theoretical analysis of efficiency has also been dichotomized. The optimality of the distribution of output in the second period is distributive efficiency" and the optimality of the allocation of first-period resources is 'the efficiency of investment'. We have found in the distributive efficiency that the conditions for attainability is the same as the conditions for market optimality. The necessary and sufficient conditions for attainability or market optimality is that (1) all utility functions are such that -$\frac{{U_i}^'(Y_i)}{{U_i}^"(Y_i)}={\mu}_i+{\lambda}Y_i$-linear risk tolerance function where the coefficients ${\mu}_i$ and $\lambda$ are independent of $Y_i$, and (2) there are homogeneous expectations, i. e. ${\Large f}_i(\theta)={\Large f}(\theta)$ for every i. On the other hand, the efficiency of investment has disagreement about optimal investment level. The investment level for market rule will not generally lead to Pareto-optimal allocation of investment. This suboptimality is caused by (1)the difference of Diamond's decomposable production function and mean-variance valuation model and (2) the selection of exelusive investment or competitive investment. In conclusion, this article has made an analysis of conditions and processes of Pareto-optimal allocation of resources in capital marker and tried to connect with significant issues in modern finance.

  • PDF

Quantum Bee Colony Optimization and Non-dominated Sorting Quantum Bee Colony Optimization Based Multi-relay Selection Scheme

  • Ji, Qiang;Zhang, Shifeng;Zhao, Haoguang;Zhang, Tiankui;Cao, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4357-4378
    • /
    • 2017
  • In cooperative multi-relay networks, the relay nodes which are selected are very important to the system performance. How to choose the best cooperative relay nodes is an optimization problem. In this paper, multi-relay selection schemes which consider either single objective or multi-objective are proposed based on evolutionary algorithms. Firstly, the single objective optimization problems of multi-relay selection considering signal to noise ratio (SNR) or power efficiency maximization are solved based on the quantum bee colony optimization (QBCO). Then the multi-objective optimization problems of multi-relay selection considering SNR maximization and power consumption minimization (two contradictive objectives) or SNR maximization and power efficiency maximization (also two contradictive objectives) are solved based on non-dominated sorting quantum bee colony optimization (NSQBCO), which can obtain the Pareto front solutions considering two contradictive objectives simultaneously. Simulation results show that QBCO based multi-relay selection schemes have the ability to search global optimal solution compared with other multi-relay selection schemes in literature, while NSQBCO based multi-relay selection schemes can obtain the same Pareto front solutions as exhaustive search when the number of relays is not very large. When the number of relays is very large, exhaustive search cannot be used due to complexity but NSQBCO based multi-relay selection schemes can still be used to solve the problems. All simulation results demonstrate the effectiveness of the proposed schemes.

An Alternative Approach for Environmental Education to overcome free rider egoism based on the Perspectives of Prisoner's Dilemma Situation (죄수딜렘마(PD) 게임상황을 활용한 환경교육의 가능성)

  • 김태경
    • Hwankyungkyoyuk
    • /
    • v.13 no.2
    • /
    • pp.38-50
    • /
    • 2000
  • We are evidently Home Economicus, egoistic rational utility maximiger, and all the capitalism economic situation make us adapt to such life, and recognize that it is rational to act like that. This can be demonstrated in Prisoner′s Dilemma(PD) which always select the non-cooperative choice for free rider in rational selection process of public goods. This paper notice the "what is problem\ulcorner"The problem is not in free rider itself but in free rider egoism. The practical behavior of free rider egoism can be explained by way of Prisoner′s Dilemma. In PD situation, the prisoner makes a rational choice, non-cooperative alternative, but he doesn′arrive at preto-optimality. It is dilemma. Why can′t he arrive \ulcorner Because he is isolated from other prisoner. So we call it prisoner′s dilemma. The PD situation can be compared with our real economic life, which, we think, have kept by rational choice of the public goods. We actually have made our life as an individual one although we organized communities of capitalism. Of course, we know each others as members of same society, but each individual being can′t secure the belief, which has composed basis of community. So, it is very similar and common between PD situation and our real economic life in the production of public goods. We conclude that this non-cooperative process of PD situation can be utilized as instrument of EE. So this non-cooperative process can show us the effectiveness of EE as follows. \circled1 Game situation life PD can be used as good instrument for explaining the rational selection dilemma(error) to Homo-Economicus, the rational agent, with the optimal and rational language. \circled2 We can show that the selection result is dilemma, not arrive pareto - optimality. \circled3 The dilemma can be resolved with accomplishing the good communal life based on the belief, not on the isolation.

  • PDF

A Multi-Objective Optimization Framework for Conceptual Design of a Surface-to-Surface Missile System (지대지 유도탄 체계 개념설계를 위한 다목적 최적화 프레임워크)

  • Lee, Jong-Sung;Ahn, Jae-myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.460-467
    • /
    • 2019
  • This paper proposes a multi-objective optimization (MOO) framework for conceptual design of a surface-to-surface missile system. It can generate the set of Pareto optimal system design, which can be used for system trade-off study in a very early stage of the research and development process. The proposed framework consists of four functional modules (an environmental setting module, a variable setting module, a multidisciplinary analysis module and an optimization module) to make the model easy to change, and the concept design process using the framework was able to achieve the purpose of reviewing various designs in the early stage of development. A case study demonstrating the effectiveness of the framework has presented applicability to the system design, and the proposed framework has contributed to presenting a design environment that can ensure reliability and reduce computational time in the conceptual design stage.

Case Analysis of Conflicts in Renewable Power Generation Projects Using Non-cooperative Game Theory (비협조적 게임이론을 활용한 신재생발전사업 갈등 사례분석)

  • Park, Jaehyon;Kim, Kyeongkuk;Kim, Kyeongseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.215-221
    • /
    • 2024
  • The government is encouraging the expansion of renewable energy facilities through national renewable energy policy. However, the installation of renewable energy generation facilities has led to local resident complaints due to landscape degradation, electromagnetic wave emission, real estate devaluation, and environmental pollution. This creates conflicts between power project developers and residents, making the progress of projects more difficult. This study applies non-cooperative game theory to analyze eight cases of renewable energy projects where conflicts between developers and residents were resolved through resident's investment participation. By accepting investments from local stakeholders, residents achieved returns ranging from a maximum of 25 % to a minimum of 4.1 %. It was found through game theory analysis that a dominant strategy involves residents agreeing to the development of the project and the developers sharing a portion of the profits with the residents. The analysis results show that the point where dominant strategy meet forms a Nash equilibrium, and at the same time becomes the Pareto optimal point, benefiting both power generation operators and residents.

Design of Fuzzy Controller using Multi-objective Genetic Algorithm (다목적 유전자 알고리즘을 이용한 퍼지제어기의 설계)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.209-216
    • /
    • 2005
  • The controller that can control the smart base isolation system consisting of M damper and friction pendulum systems(FPS) is developed in this study. A fuzzy logic controller (FLC) is used to modulate the M damper force because the FLC has an inherent robustness and ability to handle non-linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. When earthquake excitations are applied to the structures equipped with smart base isolation system, the relative displacement at the isolation level as well as the acceleration of the structure should be regulated under appropriate level. Thus, NSGA-II(Non-dominated Sorting Genetic Algorithm) is employed in this study as a multi-objective genetic algorithm to meet more than two control objectives, simultaneously. NSGA-II is used to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can efficiently find Pareto optimal sets that can reduce both structural acceleration and base drift from numerical studies.

  • PDF

Machine load prediction for selecting machines in machining (절삭가공에서의 기계선정을 위한 기계부하 예측)

  • Choi H.R.;Kim J.K.;Rho H.M.;Lee H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.997-1000
    • /
    • 2005
  • Dynamic job shop environment requires not only more flexible capabilities of a CAPP system but higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations to be performed by predicting the machine loads. The developed algorithm is based on the multiple objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as Pareto-optimal solutions). The objective shows a combination of the minimization of part movement and the maximization of machine utility balance. The algorithm is characterized by a new and efficient method for nondominated sorting, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II.

  • PDF

Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method (노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계)

  • 이준배;이병채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.

Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

  • Park, Hong Seok;Nguyen, Trung Thanh
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.256-265
    • /
    • 2014
  • Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using non-dominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.