• Title/Summary/Keyword: pareto optimal set

Search Result 80, Processing Time 0.033 seconds

A Study on the Optimum Structural Design for Oil Tankers Using Multi-Objective Optimization

  • Jang, Chang-Doo;Shin, Sang-Hun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.245-253
    • /
    • 1998
  • Recently, the importance of multi-objective optimization techniques and stochastic search methods is increasing. The stochastic search methods have the concepts of the survival of the fittest and natural selection such as genetic algorithms(GA), simulated annealing(SA) and evolution strategies (ES). As many accidents of oil tankers cause marine pollution, oil tankers of double hull or mid deck structure are being built to minimize the marine pollution. For the improvement of oil tanker design technique, an efficient optimization technique is proposed in this study. Multi-objective optimization problem of weight and cost of double hull and mid deck tanker is formulated. Discrete design variables are used considering real manufacturing, and the concept of relative production cost is also introduced. The ES method is used as an optimization technique, and the ES algorithm was developed to generate a more efficient Pareto optimal set.

  • PDF

A Genetic Algorithm for A Cell Formation with Multiple Objectives (다목적 셀 형성을 위한 유전알고리즘)

  • 이준수;정병호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.31-41
    • /
    • 2003
  • This paper deals with a cell formation problem for a set of m-machines and n-processing parts. Generally, a cell formation problem is known as NP-completeness. Hence the cell formation problem with multiple objectives is more difficult than single objective problem. The paper considers multiple objectives; minimize number of intercell movements, minimize intracell workload variation and minimize intercell workload variation. We propose a multiple objective genetic algorithms(MOGA) resolving the mentioned three objectives. The MOGA procedure adopted Pareto optimal solution for selection method for next generation and the concept of Euclidean distance from the ideal and negative ideal solution for fitness test of a individual. As we consider several weights, decision maker will be reflected his consideration by adjusting high weights for important objective. A numerical example is given for a comparative analysis with the results of other research.

A Multi-Objective Genetic Algorithm Approach to the Design of Reliable Water Distribution Networks

  • T.Devi Prasad;Park, Nam-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.829-836
    • /
    • 2002
  • The paper presents a multi-objective genetic algorithm approach to the design of a water distribution network. The objectives considered are minimization of network cost and maximization of a reliability measure. In this study, a new reliability measure, called network resilience, is introduced. This measure mimics a designer's desire of providing excess power at nodes and designing reliable loops with practicable pipe diameters. The proposed method produces a set of Pareto-optimal solutions in the search space of cost and network resilience. Genetic algorithms are observed to be poor in handling constraints. To handle constraints in a better way, a constraint handling technique that does not require a penalty coefficient and applicable to water distribution systems is presented. The present model is applied to two example problems, which were widely reported. Pipe failure analysis carried out on some of the solutions obtained revealed that the network resilience based approach gave better results in terms of network reliability.

  • PDF

Using Machine Learning to Improve Evolutionary Multi-Objective Optimization

  • Alotaibi, Rakan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.203-211
    • /
    • 2022
  • Multi-objective optimization problems (MOPs) arise in many real-world applications. MOPs involve two or more objectives with the aim to be optimized. With these problems improvement of one objective may led to deterioration of another. The primary goal of most multi-objective evolutionary algorithms (MOEA) is to generate a set of solutions for approximating the whole or part of the Pareto optimal front, which could provide decision makers a good insight to the problem. Over the last decades or so, several different and remarkable multi-objective evolutionary algorithms, have been developed with successful applications. However, MOEAs are still in their infancy. The objective of this research is to study how to use and apply machine learning (ML) to improve evolutionary multi-objective optimization (EMO). The EMO method is the multi-objective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D has become one of the most widely used algorithmic frameworks in the area of multi-objective evolutionary computation and won has won an international algorithm contest.

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

Game Theory Application in Wetland Conservation Across Various Hypothetical City Sizes (다양한 이론적 도시규모에서의 습지 보전을 위한 게임 이론 적용)

  • Ran-Young Im;Ji Yoon Kim;Yuno Do
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • The conservation and restoration of wetlands are essential tasks for the sustainable development of human society and the environment, providing vital benefits such as biodiversity maintenance, natural disaster mitigation, and climate change alleviation. This study aims to analyze the strategic interactions and interests among various stakeholders using game theory and to provide significant grounds for policy decisions related to wetland restoration and development. In this study, hypothetical scenarios were set up for three types of cities: large, medium, and small. Stakeholders such as governments, development companies, environmental groups, and local residents were identified. Strategic options for each stakeholder were developed, and a payoff matrix was established through discussions among wetland ecology experts. Subsequently, non-cooperative game theory was applied to analyze Nash equilibria and Pareto efficiency. In large cities, strategies of 'Wetland Conservation' and 'Eco-Friendly Development' were found beneficial for all stakeholders. In medium cities, various strategies were identified, while in small cities, 'Eco-Friendly Development' emerged as the optimal solution for all parties involved. The Pareto efficiency analysis revealed how the optimal solutions for wetland management could vary across different city types. The study highlighted the importance of wetland conservation, eco-friendly development, and wetland restoration projects for each city type. Accordingly, policymakers should establish regulations and incentives that harmonize environmental protection and urban development and consider programs that promote community participation. Understanding the roles and strategies of stakeholders and the advantages and disadvantages of each strategy is crucial for making more effective policy decisions.

Life-cycle-cost optimization for the wind load design of tall buildings equipped with TMDs

  • Venanzi, Ilaria;Ierimonti, Laura;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.379-392
    • /
    • 2020
  • The paper presents a Life-Cycle Cost-based optimization framework for wind-excited tall buildings equipped with Tuned Mass Dampers (TMDs). The objective is to minimize the Life-Cycle Cost that comprises initial costs of the structure, the control system and costs related to repair, maintenance and downtime over the building's lifetime. The integrated optimization of structural sections and mass ratio of the TMDs is carried out, leading to a set of Pareto optimal solutions. The main advantage of the proposed methodology is that, differently from the traditional optimal design approach, it allows to perform the unified design of both the structure and the control system in a Life Cycle Cost Analysis framework. The procedure quantifies wind-induced losses, related to structural and nonstructural damage, considering the stochastic nature of the loads (wind velocity and direction), the specificity of the structural modeling (e.g., non-shear-type vibration modes and torsional effects) and the presence of the TMDs. Both serviceability and ultimate limit states related to the structure and the TMDs' damage are adopted for the computation of repair costs. The application to a case study tall building allows to demonstrate the efficiency of the procedure for the integrated design of the structure and the control system.

A Multi-Objective Optimization Framework for Conceptual Design of a Surface-to-Surface Missile System (지대지 유도탄 체계 개념설계를 위한 다목적 최적화 프레임워크)

  • Lee, Jong-Sung;Ahn, Jae-myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.460-467
    • /
    • 2019
  • This paper proposes a multi-objective optimization (MOO) framework for conceptual design of a surface-to-surface missile system. It can generate the set of Pareto optimal system design, which can be used for system trade-off study in a very early stage of the research and development process. The proposed framework consists of four functional modules (an environmental setting module, a variable setting module, a multidisciplinary analysis module and an optimization module) to make the model easy to change, and the concept design process using the framework was able to achieve the purpose of reviewing various designs in the early stage of development. A case study demonstrating the effectiveness of the framework has presented applicability to the system design, and the proposed framework has contributed to presenting a design environment that can ensure reliability and reduce computational time in the conceptual design stage.

Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia (지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석)

  • Park, Hyun-Jung;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.19-43
    • /
    • 2014
  • The Pareto principle, also known as the 80-20 rule, states that roughly 80% of the effects come from 20% of the causes for many events including natural phenomena. It has been recognized as a golden rule in business with a wide application of such discovery like 20 percent of customers resulting in 80 percent of total sales. On the other hand, the Long Tail theory, pointing out that "the trivial many" produces more value than "the vital few," has gained popularity in recent times with a tremendous reduction of distribution and inventory costs through the development of ICT(Information and Communication Technology). This study started with a view to illuminating how these two primary business paradigms-Pareto principle and Long Tail theory-relates to the success of virtual knowledge collaboration. The importance of virtual knowledge collaboration is soaring in this era of globalization and virtualization transcending geographical and temporal constraints. Many previous studies on knowledge sharing have focused on the factors to affect knowledge sharing, seeking to boost individual knowledge sharing and resolve the social dilemma caused from the fact that rational individuals are likely to rather consume than contribute knowledge. Knowledge collaboration can be defined as the creation of knowledge by not only sharing knowledge, but also by transforming and integrating such knowledge. In this perspective of knowledge collaboration, the relative distribution of knowledge sharing among participants can count as much as the absolute amounts of individual knowledge sharing. In particular, whether the more contribution of the upper 20 percent of participants in knowledge sharing will enhance the efficiency of overall knowledge collaboration is an issue of interest. This study deals with the effect of this sort of knowledge sharing distribution on the efficiency of knowledge collaboration and is extended to reflect the work characteristics. All analyses were conducted based on actual data instead of self-reported questionnaire surveys. More specifically, we analyzed the collaborative behaviors of editors of 2,978 English Wikipedia featured articles, which are the best quality grade of articles in English Wikipedia. We adopted Pareto ratio, the ratio of the number of knowledge contribution of the upper 20 percent of participants to the total number of knowledge contribution made by the total participants of an article group, to examine the effect of Pareto principle. In addition, Gini coefficient, which represents the inequality of income among a group of people, was applied to reveal the effect of inequality of knowledge contribution. Hypotheses were set up based on the assumption that the higher ratio of knowledge contribution by more highly motivated participants will lead to the higher collaboration efficiency, but if the ratio gets too high, the collaboration efficiency will be exacerbated because overall informational diversity is threatened and knowledge contribution of less motivated participants is intimidated. Cox regression models were formulated for each of the focal variables-Pareto ratio and Gini coefficient-with seven control variables such as the number of editors involved in an article, the average time length between successive edits of an article, the number of sections a featured article has, etc. The dependent variable of the Cox models is the time spent from article initiation to promotion to the featured article level, indicating the efficiency of knowledge collaboration. To examine whether the effects of the focal variables vary depending on the characteristics of a group task, we classified 2,978 featured articles into two categories: Academic and Non-academic. Academic articles refer to at least one paper published at an SCI, SSCI, A&HCI, or SCIE journal. We assumed that academic articles are more complex, entail more information processing and problem solving, and thus require more skill variety and expertise. The analysis results indicate the followings; First, Pareto ratio and inequality of knowledge sharing relates in a curvilinear fashion to the collaboration efficiency in an online community, promoting it to an optimal point and undermining it thereafter. Second, the curvilinear effect of Pareto ratio and inequality of knowledge sharing on the collaboration efficiency is more sensitive with a more academic task in an online community.

A Study on the Economic Efficiency of Capital Market (자본시장(資本市場)의 경제적(經濟的) 효율성(效率性)에 관한 연구(硏究))

  • Nam, Soo-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.2 no.1
    • /
    • pp.55-75
    • /
    • 1986
  • This article is to analyse the economic efficiency of capital market, which plays a role of resource allocation in terms of financial claims such as stock and bond. It provides various contributions to the welfare theoretical aspects of modern capital market theory. The key feature that distinguishes the theory described here from traditional welfare theory is the presence of uncertainty. Securities has time dimensions and the state and outcome of the future are really uncertain. This problem resulting from this uncertainty can be solved by complete market, but it has a weak power to explain real stock market. Capital Market is faced with the uncertainity because it is a kind of incomplete market. Individuals and firms in capital market made their consumption-investment decision by their own criteria, i. e. the maximization of expected utility form intertemporal consumption and the maximization of the market value of firm. We noted that allocative decisions that had to be made in the economy could be naturally subdivided into two groups. One set of decisions concerned the allocation of first-period resources among consumption $C_i$, investment in risky firms $I_j$, and riskless investment M. The other decisions concern the distribution among individuals of income available in the second period $Y_i(\theta)$. Corresponing to this grouping, the theoretical analysis of efficiency has also been dichotomized. The optimality of the distribution of output in the second period is distributive efficiency" and the optimality of the allocation of first-period resources is 'the efficiency of investment'. We have found in the distributive efficiency that the conditions for attainability is the same as the conditions for market optimality. The necessary and sufficient conditions for attainability or market optimality is that (1) all utility functions are such that -$\frac{{U_i}^'(Y_i)}{{U_i}^"(Y_i)}={\mu}_i+{\lambda}Y_i$-linear risk tolerance function where the coefficients ${\mu}_i$ and $\lambda$ are independent of $Y_i$, and (2) there are homogeneous expectations, i. e. ${\Large f}_i(\theta)={\Large f}(\theta)$ for every i. On the other hand, the efficiency of investment has disagreement about optimal investment level. The investment level for market rule will not generally lead to Pareto-optimal allocation of investment. This suboptimality is caused by (1)the difference of Diamond's decomposable production function and mean-variance valuation model and (2) the selection of exelusive investment or competitive investment. In conclusion, this article has made an analysis of conditions and processes of Pareto-optimal allocation of resources in capital marker and tried to connect with significant issues in modern finance.

  • PDF