• Title/Summary/Keyword: parametric survival model

Search Result 32, Processing Time 0.031 seconds

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.

Modeling of Breast Cancer Prognostic Factors Using a Parametric Log-Logistic Model in Fars Province, Southern Iran

  • Zare, Najaf;Doostfatemeh, Marzieh;Rezaianzadeh, Abass
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1533-1537
    • /
    • 2012
  • In general, breast cancer is the most common malignancy among women in developed as well as some developing countries, often being the second leading cause of cancer mortality after lung cancer. Using a parametric log-logistic model to consider the effects of prognostic factors, the present study focused on the 5-year survival of women with the diagnosis of breast cancer in Southern Iran. A total of 1,148 women who were diagnosed with primary invasive breast cancer from January 2001 to January 2005 were included and divided into three prognosis groups: poor, medium, and good. The survival times as well as the hazard rates of the three different groups were compared. The log-logistic model was employed as the best parametric model which could explain survival times. The hazard rates of the poor and the medium prognosis groups were respectively 13 and 3 times greater than in the good prognosis group. Also, the difference between the overall survival rates of the poor and the medium prognosis groups was highly significant in comparison to the good prognosis group. Use of the parametric log-logistic model - also a proportional odds model - allowed assessment of the natural process of the disease based on hazard and identification of trends.

Survival Analysis of Patients with Breast Cancer using Weibull Parametric Model

  • Baghestani, Ahmad Reza;Moghaddam, Sahar Saeedi;Majd, Hamid Alavi;Akbari, Mohammad Esmaeil;Nafissi, Nahid;Gohari, Kimiya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8567-8571
    • /
    • 2016
  • Background: The Cox model is known as one of the most frequently-used methods for analyzing survival data. However, in some situations parametric methods may provide better estimates. In this study, a Weibull parametric model was employed to assess possible prognostic factors that may affect the survival of patients with breast cancer. Materials and Methods: We studied 438 patients with breast cancer who visited and were treated at the Cancer Research Center in Shahid Beheshti University of Medical Sciences during 1992 to 2012; the patients were followed up until October 2014. Patients or family members were contacted via telephone calls to confirm whether they were still alive. Clinical, pathological, and biological variables as potential prognostic factors were entered in univariate and multivariate analyses. The log-rank test and the Weibull parametric model with a forward approach, respectively, were used for univariate and multivariate analyses. All analyses were performed using STATA version 11. A P-value lower than 0.05 was defined as significant. Results: On univariate analysis, age at diagnosis, level of education, type of surgery, lymph node status, tumor size, stage, histologic grade, estrogen receptor, progesterone receptor, and lymphovascular invasion had a statistically significant effect on survival time. On multivariate analysis, lymph node status, stage, histologic grade, and lymphovascular invasion were statistically significant. The one-year overall survival rate was 98%. Conclusions: Based on these data and using Weibull parametric model with a forward approach, we found out that patients with lymphovascular invasion were at 2.13 times greater risk of death due to breast cancer.

Application of Cox and Parametric Survival Models to Assess Social Determinants of Health Affecting Three-Year Survival of Breast Cancer Patients

  • Mohseny, Maryam;Amanpour, Farzaneh;Mosavi-Jarrahi, Alireza;Jafari, Hossein;Moradi-Joo, Mohammad;Monfared, Esmat Davoudi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.311-316
    • /
    • 2016
  • Breast cancer is one of the most common causes of cancer mortality in Iran. Social determinants of health are among the key factors affecting the pathogenesis of diseases. This cross-sectional study aimed to determine the social determinants of breast cancer survival time with parametric and semi-parametric regression models. It was conducted on male and female patients diagnosed with breast cancer presenting to the Cancer Research Center of Shohada-E-Tajrish Hospital from 2006 to 2010. The Cox proportional hazard model and parametric models including the Weibull, log normal and log-logistic models were applied to determine the social determinants of survival time of breast cancer patients. The Akaike information criterion (AIC) was used to assess the best fit. Statistical analysis was performed with STATA (version 11) software. This study was performed on 797 breast cancer patients, aged 25-93 years with a mean age of 54.7 (${\pm}11.9$) years. In both semi-parametric and parametric models, the three-year survival was related to level of education and municipal district of residence (P<0.05). The AIC suggested that log normal distribution was the best fit for the three-year survival time of breast cancer patients. Social determinants of health such as level of education and municipal district of residence affect the survival of breast cancer cases. Future studies must focus on the effect of childhood social class on the survival times of cancers, which have hitherto only been paid limited attention.

Survival of Colorectal Cancer in the Presence of Competing-Risks - Modeling by Weibull Distribution

  • Baghestani, Ahmad Reza;Daneshvar, Tahoura;Pourhoseingholi, Mohamad Amin;Asadzadeh, Hamid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1193-1196
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is the commonest malignancy in the lower gastrointestinal tract in both men and women. It is the third leading cause of cancer-dependent death in the world. In Iran the incidence of colorectal cancer has increased during the last 25 years. Materials and Methods: In this article we analyzed the survival of 447 colorectal patients of Taleghani hospital in Tehran using parametric competing-risks models. The cancers of these patients were diagnosed during 1985 - 2012 and followed up to 2013. The purpose was to assess the association between survival of patients with colorectal cancer in the presence of competing-risks and prognostic factors using parametric models. The analysis was carried out using R software version 3.0.2. Results: The prognostic variables included in the model were age at diagnosis, tumour site, body mass index and sex. The effect of age at diagnosis and body mass index on survival time was statistically significant. The median survival for Iranian patients with colorectal cancer is about 20 years. Conclusions: Survival function based on Weibull model compared with Kaplan-Meier survival function is smooth. Iranian data suggest a younger age distribution compared to Western reports for CRC.

A Study on the Survival Probability and Survival Factors of Small and Medium-sized Enterprises Using Technology Rating Data (기술평가 자료를 이용한 중소기업의 생존율 추정 및 생존요인 분석)

  • Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.11 no.2
    • /
    • pp.95-109
    • /
    • 2010
  • The objectives of this study are to identify the survival function (hazard function) of small and medium enterprises by using technology rating data for the companies guaranteed by Korea Technology Finance Corporation (KOTEC), and to figure out the factors that affects their survival. To serve the purposes, this study uses Kaplan-Meier Analysis as a non-parametric method and Cox proportional hazards model as a semi-parametric one. The 17,396 guaranteed companies that assessed from July 1st in 2005 to December 31st in 2009 are selected as samples (16,504 censored data and 829 accident data). The survival time is computed with random censoring (Type III) from July in 2005 as a starting point. The results of the analysis show that Kaplan-Meier Analysis and Cox proportional hazards model are able to readily estimate survival and hazard function and to perform comparative study among group variables such as industry and technology rating level. In particular, Cox proportional hazards model is recognized that it is useful to understand which technology rating items are meaningful to company's survival and how much they affect it. It is considered that these results will provide valuable knowledge for practitioners to find and manage the significant items for survival of the guaranteed companies through future technology rating.

  • PDF

Estimating survival distributions for two-stage adaptive treatment strategies: A simulation study

  • Vilakati, Sifiso;Cortese, Giuliana;Dlamini, Thembelihle
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.411-424
    • /
    • 2021
  • Inference following two-stage adaptive designs (also known as two-stage randomization designs) with survival endpoints usually focuses on estimating and comparing survival distributions for the different treatment strategies. The aim is to identify the treatment strategy(ies) that leads to better survival of the patients. The objectives of this study were to assess the performance three commonly cited methods for estimating survival distributions in two-stage randomization designs. We review three non-parametric methods for estimating survival distributions in two-stage adaptive designs and compare their performance using simulation studies. The simulation studies show that the method based on the marginal mean model is badly affected by high censoring rates and response rate. The other two methods which are natural extensions of the Nelson-Aalen estimator and the Kaplan-Meier estimator have similar performance. These two methods yield survival estimates which have less bias and more precise than the marginal mean model even in cases of small sample sizes. The weighted versions of the Nelson-Aalen and the Kaplan-Meier estimators are less affected by high censoring rates and low response rates. The bias of the method based on the marginal mean model increases rapidly with increase in censoring rate compared to the other two methods. We apply the three methods to a leukemia clinical trial dataset and also compare the results.

Survival of Colorectal Cancer Patients in the Presence of Competing-Risk

  • Baghestani, Ahmad Reza;Daneshvar, Tahoura;Pourhoseingholi, Mohamad Amin;Asadzade, Hamid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6253-6255
    • /
    • 2014
  • Background: Colorectal cancer (CRC) is considered to be a main cause of malignancy-related death in the world, being commonly diagnosed in both men and women. It is the third leading cause of cancer dependent death in the world and there are one million new cases diagnosed per year. In Iran the incidence of colorectal cancer has increased during the last 25 years and it is the fifth cause of cancer in men and the third in women. Materials and Methods: In this article we analyzed the survival of 475 colorectal patients of Taleghani hospital in Tehran with the semi-parametric competing-risks model. Results: There were 55% male cases and at the time of the diagnosis most of the patients were between 48 and 67years old. The probability of a patient death from colorectal cancer with survival of more than 25 years was about 0.4. Body mass index, height, tumour site and gender had no influence. Conclusions: According to these data and by using semi-parametric competing-risks method, we found out that only age at diagnosis has a significant effect on these patient survival time.

Applying Conventional and Saturated Generalized Gamma Distributions in Parametric Survival Analysis of Breast Cancer

  • Yavari, Parvin;Abadi, Alireza;Amanpour, Farzaneh;Bajdik, Chris
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1829-1831
    • /
    • 2012
  • Background: The generalized gamma distribution statistics constitute an extensive family that contains nearly all of the most commonly used distributions including the exponential, Weibull and log normal. A saturated version of the model allows covariates having effects through all the parameters of survival time distribution. Accelerated failure-time models assume that only one parameter of the distribution depends on the covariates. Methods: We fitted both the conventional GG model and the saturated form for each of its members including the Weibull and lognormal distribution; and compared them using likelihood ratios. To compare the selected parameter distribution with log logistic distribution which is a famous distribution in survival analysis that is not included in generalized gamma family, we used the Akaike information criterion (AIC; r=l(b)-2p). All models were fitted using data for 369 women age 50 years or more, diagnosed with stage IV breast cancer in BC during 1990-1999 and followed to 2010. Results: In both conventional and saturated parametric models, the lognormal was the best candidate among the GG family members; also, the lognormal fitted better than log-logistic distribution. By the conventional GG model, the variables "surgery", "radiotherapy", "hormone therapy", "erposneg" and interaction between "hormone therapy" and "erposneg" are significant. In the AFT model, we estimated the relative time for these variables. By the saturated GG model, similar significant variables are selected. Estimating the relative times in different percentiles of extended model illustrate the pattern in which the relative survival time change during the time. Conclusions: The advantage of using the generalized gamma distribution is that it facilitates estimating a model with improved fit over the standard Weibull or lognormal distributions. Alternatively, the generalized F family of distributions might be considered, of which the generalized gamma distribution is a member and also includes the commonly used log-logistic distribution.

Analysis of Consumers' Willingness to Pay for Organic Agricultural Products Using Parametric Survival Model (모수적 생존모형을 이용한 유기농산물의 지불의향 가격 분석)

  • Kim, Chang-Gil;Koo, Ja-Choon;Jeong, Hak-Kyun
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.2
    • /
    • pp.169-188
    • /
    • 2016
  • The purpose of this study is to analyze willingness to pay (WTP) for organic agricultural products. To accomplish the objective of the study, a consumer survey was conducted. Based on the pilot survey results, parametric survival model was used to analyze the WTP for organic products. The estimation results showed that the WTP for organic agricultural products is 1.4-fold when compared with the conventional products, which is lower than the current price by about 30 percent. The analytical results also showed that such variables as gender, recognitions for organic agricultural products, and consumers' income have very significant effects on the WTP, and that there are no differences among WTPs by consumption goals. Based on major findings, the most effective countermeasure was suggested for expanding of organic food consumption through the premium reduction of organic products. Reducing the costs of production and distribution, supporting farmers' income by direct payment system were presented. Furthermore, it is needed to allocate more budget for promoting the consumption and distribution of organic agricultural products, and for enhancing conservation of agricultural environment.