• Title/Summary/Keyword: parametric numerical simulation

Search Result 226, Processing Time 0.026 seconds

A Numerical Analysis on the Spray Characteristics at Different Injection System Parameters in a Common-rail Diesel Engine (연료분사계 변수의 변화에 따른 커먼레일 디젤엔진의 분무특성에 관한 수치적 분석)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This paper present the diesel spray characteristics at different injection system parameters in a HSDI diesel engine. The spray characteristics was calculated by the coupled simulation of fuel injection system model and three-dimensional KIVA-3V code with TAB spray model. The relevant injection parameters are accumulator volume, control chamber initial volume, control orifice diameter, needle valve diameter and nozzle chamber initial volume, etc. Parametric investigation with respect to twelve relevant injection parameters showed that there was a significant advantage in varying control chamber initial volume, control chamber orifice diameter, and nozzle chamber orifice diameter with respect to effect the SMD and fuel injection speed. Consequently, in order to design the fuel injection system for spray characteristics, it seems reasonable to suppose to be optimized the fuel injection system.

Heat and Mass Transfer Analysis of Phosphoric Acid Fuel Cell According to Variation of gas Flow passage (인산형 연료전지의 가스유로방향 변화에 따른 열 및 물질전달해석)

  • 전동협;정영식;채재우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1338-1346
    • /
    • 1994
  • The objective of this study is to investigate the effect of various parameters, such as temperature, mean current density and voltage on the performance of phosphoric acid fuel cell (PAFC) by numerical analysis. Two types of flow passages, which are Z-parallel type and Z-counter type, are evaluated to obtain the best current density and temperature distribution. Parametric studies and sensitivity analysis of the PAFC system's operation in single cell are accomplished. A steady state simulation of the entire system is developed using nonlinear ordinary differential equations. The finite difference method and trial and error procedures are used to obtain a solution.

[ $H_2$ ]-optimal Control with Regional Pole Assignment via State Feedback

  • Wang Guo-Sheng;Liang Bing;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.653-659
    • /
    • 2006
  • The design of $H_2$-optimal control with regional pole assignment via state feedback in linear time-invariant systems is investigated. The aim is to find a state feedback controller such that the closed-loop system has the desired eigenvalues lying in some desired stable regions and attenuates the disturbance between the output vector and the disturbance vector. Based on a proposed result of parametric eigenstructure assignment via state feedback in linear systems, the considered $H_2$-optimal control problem is changed into a minimization problem with certain constraints, and a simple and effective algorithm is proposed for this considered problem. A numerical example and its simulation results show the simplicity and effectiveness of this proposed algorithm.

Characteristics of the Transient Pressure in a Building Water Supply System with an Air Chamber (공기실이 설치된 건축물 급수관로의 과도압력 특성)

  • 황희성;임기원;이광복;조병선;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.782-790
    • /
    • 2000
  • A numerical study has been conducted to characterize the transient pressure in a building water supply system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for the purpose of verification in the study agree quite well with the previously reported. Several parameters are then varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the inner diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^P{circ}C $,/TEX> and 0.8 m/s, respectively, Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

Performance analysis of the reciprocating compressor with hydrocarbon refrigerant mixtures, R290/R600a (탄화수소계(R290/R600a) 혼합냉매를 적용한 왕복동형 압축기 성능 해석)

  • 김종헌;정연구;박경우;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.270-280
    • /
    • 1999
  • A performance analysis simulation program that can be applied to a hermetic reciprocating compressor with various refrigerants has been developed. For the numerical analysis, the passage of refrigerant in compressor is subdivided into control volumes. Instead of the ideal gas assumption, CSD equation of state is applied to calculate the thermodynamic properties of refrigerants. To verify the validity of developed program, the result has been compared with the experimental data served by the compressor supplier. The performance of each refrigerant and the possibility of direct application are estimated by applying R12, 134a, R290, R600a and R290/R600a mixture to an existing compressor. Also, parametric study for various crank rotating speeds and the mole fractions of refrigerant has been performed.

  • PDF

Design of an Adaptive Fuzzy Backstepping Controller for a Single-Link Flexible-Joint Robot (단일 축 유연 관절 로봇의 적응 퍼지 백스테핑 제어기 설계)

  • Kim, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.62-70
    • /
    • 2008
  • An adaptive fuzzy backstepping controller is proposed for the motion control for a single-link flexible-joint robot in the presence of parametric uncertainties. Fuzzy logic system is used to approximate the uncertainties of functions and a backstepping technique is employed to deal with the mismatched problem. A compensation controller is also employed to estimates the bound of approximation error so that the shattering effect of the control effort can be reduced. Thus the asymptotic stability of the closed loop control system can be obtained based on a Lyapunov synthesis approach. Numerical simulation results for a single-link flexible-joint robot are included to show the effectiveness of proposed controller.

Parametric Study of DF-$CO_2$ Transfer Chemical Laser by the Numerical Model Simulation

  • Kim, Sung-Ho;Cho, Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.527-530
    • /
    • 1990
  • The effects of the concentration and the pressure of reactants on laser output were reported in the previous study. The present study is made of the following main parameters on laser characteristics; the initial temperature of the reaction mixture, inert gas (He) added in the reaction mixture, and the level of initiation as a function of time. As the initial temperature of reaction mixture decreases, both the output energy and the duration time increase. Especially, the output energy is linearly proportional to the inverse of the initial temperature. In order to obtain a proper lasing for a given condition, a sufficient amount of He must be added: The optimum ratio of [He] to $[D_2\;+\;F_2\;+\;CO_2]$ is found to be greater than 2. In addition, the time dependence of level of initiation (TDLI) shows no significant difference in total output energy from that of the premixed model, but only the power profile.

Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building

  • Bento, R.;Bhatt, C.;Pinho, R.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.177-195
    • /
    • 2010
  • This paper presents an appraisal of four nonlinear static procedures (CSM, N2, MPA and ACSM) employed in seismic assessment of plan-irregular buildings. It uses a three storey reinforced concrete plan-irregular frame building exemplifying typical older constructions of the Mediterranean region in the early 1970s that was tested in full-scale under bi-directional pseudo-dynamic loading condition at JRC, Ispra. The adequacy and efficiency of the simplified analytical modelling assumptions adopted were verified. In addition, the appropriate variants of code-prescribed NSPs (CSM and N2) to be considered for subsequent evaluation were established. Subsequent parametric studies revealed that all such NSPs predicted reasonably well both global and local responses, having the benchmark values been determined through nonlinear dynamic analyses using a suit of seven ground motions applied with four different orientations. The ACSM, however, predicted responses that matched slightly better the median dynamic results.

Theoretical Analysis for the HF Chemical Laser System with a Selected Fluoride Molecule

  • You, Myung-A;Cho, Ung-In;Kim, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.227-232
    • /
    • 1991
  • The possibility for the high intensity and energy possessing a short pulse in the HF chemical laser system which contained fluoride molecules (RF) was demonstrated theoretically through the numerical model simulation. The calculation was accomplished by assuming that the thermal branched chain mechanism of RF was occurred in the initiation step of $H_2+F_2$ chain reaction. Variations of the major chemicals and the temperature in the system were calculated as a function of time. An analysis was also performed to evaluate output pulse profile through parametric studies.

  • PDF

Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets

  • Zhang, Yonggang;Wang, Yonghong;Zhao, Yuanyuan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.369-383
    • /
    • 2021
  • This article deals with the frequency analysis of viscoelastic sandwich disk with graphene nano-platelets (GPLs) reinforced viscoelastic concrete (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin-Tsai model are engaged to provide the effective material constant of the concrete. By employing Hamilton's principle, the governing equations of the structure are derived and solved with the aid of the Generalize Differential Quadrature Method (GDQM). In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Afterward, a parametric study is carried out to investigate the effects of the outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the concrete, the weight fraction of GPLs into concrete, and the thickness of honeycomb core to inner radius ratio on the frequency of the viscoelastic sandwich disk with honeycomb core and FG-GPLRVC face sheet.