• Title/Summary/Keyword: parametric function

Search Result 617, Processing Time 0.031 seconds

On the thermal buckling response of FG Beams using a logarithmic HSDT and Ritz method

  • Kadda Bouhadjeb;Abdelhakim Kaci;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohammed A. Al-Osta;S.R. Mahmoud;Farouk Yahia Addou
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.453-465
    • /
    • 2024
  • This paper presents a logarithmic shear deformation theory to study the thermal buckling response of power-law FG one-dimensional structures in thermal conditions with different boundary conditions. It is assumed that the functionally graded material and thermal properties are supposed to vary smoothly according to a contentious function across the vertical direction of the beams. A P-FG type function is employed to describe the volume fraction of material and thermal properties of the graded (1D) beam. The Ritz model is employed to solve the thermal buckling problems in immovable boundary conditions. The outcomes of the stability analysis of FG beams with temperature-dependent and independent properties are presented. The effects of the thermal loading are considered with three forms of rising: nonlinear, linear and uniform. Numerical results are obtained employing the present logarithmic theory and are verified by comparisons with the other models to check the accuracy of the developed theory. A parametric study was conducted to investigate the effects of various parameters on the critical thermal stability of P-FG beams. These parameters included support type, temperature fields, material distributions, side-to-thickness ratios, and temperature dependency.

Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model (2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석)

  • 신기홍;조용구;차병규;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

Development of a Compressor Design System Using Configuration Design Method (편집설계 기법을 이용한 압축기 설계 시스템 개발)

  • Lee, Kang-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • In this research, we developed a design system for a compressor of an air conditioner using solid CAD system. The developed design system has some characteristics. First, the design system used a configuration design method, so a designer can design a compressor very quickly by using the constructed master libraries. Next, the system was developed to be used not only by engineers but also by salesmen. It is very easy for a user to use it, so a salesman can get a result very easily with the design system. And it has some design modules which give a considerable convenience to designers. Actually, designers are accustomed to the module based design. Then, it has calculation and analysis functions. Volume and mass of a part, and interference between parts are calculated by using the geometric calculation function of a solid CAD system. Also a packaging calculation was implemented to get the smallest space to package compressors for transportation and storing. An interface with a program to analyze the vibration of a compressor was developed in this design system. The design system is similar to CBD (Case-Based Design) system in the view of the whole design process.

Gas detonation cell width prediction model based on support vector regression

  • Yu, Jiyang;Hou, Bingxu;Lelyakin, Alexander;Xu, Zhanjie;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1423-1430
    • /
    • 2017
  • Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, ${\lambda}$, is highly correlated with the characteristic reaction zone width, ${\delta}$. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of ${\lambda}/{\delta}$. The obtained correlations formulate the dependency of the ratio ${\lambda}/{\delta}$ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.

Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections

  • Wu, Helong;Kitipornchai, Sritawat;Yang, Jie
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.319-332
    • /
    • 2018
  • This paper investigates the free vibration of geometrically imperfect functionally graded car-bon nanotube-reinforced composite (FG-CNTRC) beams that are integrated with two sur-face-bonded piezoelectric layers and subjected to a combined action of a uniform temperature rise, a constant actuator voltage and an in-plane force. The material properties of FG-CNTRCs are assumed to be temperature-dependent and vary continuously across the thick-ness. A generic imperfection function is employed to simulate various possible imperfections with different shapes and locations in the beam. The governing equations that account for the influence of initial geometric imperfection are derived based on the first-order shear deformation theory. The postbuckling configurations of FG-CNTRC hybrid beams are determined by the differential quadrature method combined with the modified Newton-Raphson technique, after which the fundamental frequencies of hybrid beams in the postbuckled state are obtained by a standard eigenvalue algorithm. The effects of CNT distribution pattern and volume fraction, geometric imperfection, thermo-electro-mechanical load, as well as boundary condition are examined in detail through parametric studies. The results show that the fundamental frequency of an imperfect beam is higher than that of its perfect counterpart. The influence of geometric imperfection tends to be much more pronounced around the critical buckling temperature.

Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method

  • Edalati, H.;Soltani, B.
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.235-245
    • /
    • 2018
  • In this study the stress analysis of orthotropic thin plate with arbitrary shapes for different boundary conditionsis investigated. Meshfreemethod is applied to static analysis of thin plates with various geometries based on the Kirchhoff classical plate theory. According to the meshfree method the domain of the plates are expressed through a set of nodes without using mesh. In this method, a set of nodes are defined in a standard rectangular domain, then via a third order map, these nodes are transferred to the main domain of the original geometry; therefore the analysis of the plates can be done. Herein, Meshless local Petrov-Galerkin (MLPG) as a meshfree numerical method is utilized. The MLS function in MLPG does not satisfy essential boundary conditions using Delta Kronecker. In the MLPG method, direct interpolation of the boundary conditions can be applied due to constructing node by node of the system equations. The detailed parametric study is conducted, focusing on the arbitrary geometries of the thin plates. Results show that the meshfree method provides better accuracy rather than finite element method. Also, it is found that trend of the figures have good agreement with relevant published papers.

Real-time Fuzzy Tuned PID Control Algorithm (실시간 퍼지 동조 PID 제어 알고리즘)

  • Choi Jeong-Nae;Oh Sung-Kwun;Hwang Hyung-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.423-426
    • /
    • 2005
  • In this paper, we proposed a PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kp, $\tau_{I}$, $\tau_{D}$. by the Ziegler-Nichols formula that uses the ultimate gain and ultimate period from a relay tuning experiment. We will get the error and the error rate of plant output corresponding to the initial value of parameter and fnd the new proportion gain(Kp) and the integral time ($\tau_{I}$) from fuzzy tuner by the error and error rate of plant oueut as a membership function of fuzzy theory. This fuzzy auto tuning algorithm for PID controller considerably reduced the overshoot and rise time as compared to any other PID controller tuning algorithms. And in real parametric uncertainty systems, it constitutes an appreciable improvement of performance. The significant property of this algorithm is shown by simulation

  • PDF

Sensitivity Analysis of Engine Mount System using FRF-based Substructuring Method (전달함수합성법을 이용한 엔진마운트계의 민감도 해석)

  • Lee, Du-Ho;Hwang, U-Seok;Kim, Chan-Muk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.153-160
    • /
    • 2001
  • A general procedure for the design sensitivity analysis of structural dynamic problems has been presented in frame of the FRF-based substructuring formulation. For a system response function, the proposed method gives a parametric design sensitivity formula in terms of the partial derivatives of the connection element properties and the transfer matrix of the subsystems. The derived design sensitivity formula is applied to an engine mount system. An interior noise problem in the passenger car is analyzed using the FRF-based substructuring method and the proposed formulation is adopted to study the response variations with respect to the dynamic characteristics of the engine mounts and the bushes. To obtain the FRFs, a finite element model is built for the engine mount structures, and test data is used for the trimmed body including cabin cavity. The comparison of sensitivities derived by the proposed method and the finite difference method shows that the proposed method is efficient and accurate. The proposed sensitivity analysis method indicates effectively the most sensitive location to the interior noise among the engine mounts and the bushes.

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

SMOOTHING METHOD OF AUTO-BODY PART CONTOUR FOR THE DIE-FACE DESIGN SYSTEM BASED ON THE CAE PLATFORM

  • Gong, K.J.;Guo, W.;Hu, P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.853-858
    • /
    • 2006
  • The method of die-face design based on the CAE platform for automobile panels can fast modify the die addendum. In contrast with the process of the die-face design based on the CAD platform, there are some special steps for the die-face design based on the CAE platform. The most obvious difference is that the auto-body part contour needs smoothing arlier than the design of addendum surfaces does. It is helpful to improve the design quality of addendum surface. In spite of extensive researches on the smoothing technique, here is still dearth of the published solutions about smoothing the part contour with additional surface. This paper attempts to analyze the difficulties and provides practical solutions. Main results include the algorithm to calculate the segments needing to be smoothed on boundary, the strategy to create the smoothing curve and the procedure of surface generation. The relevant function modules for parametric design are developed. A few examples and suggestions for future work conclude the paper.