• Title/Summary/Keyword: parametric equations

Search Result 543, Processing Time 0.029 seconds

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Influence of cable loosening on nonlinear parametric vibrations of inclined cables

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.219-237
    • /
    • 2007
  • The effect of cable loosening on the nonlinear parametric vibrations of inclined cables is discussed in this paper. In order to overcome the small-sag limitation in calculating loosening for inclined cables, it is necessary to first derive equations of motion for an inclined cable. Using these equations and the finite difference method, the effect of cable loosening on the nonlinear parametric response of inclined cables under periodic support excitation is evaluated. A new technique that takes into account flexural rigidity and damping is proposed as a solution to solve the problem of divergence. The regions of inclined cables that undergo compression are also indicated.

Parametrically excited viscoelastic beam-spring systems: nonlinear dynamics and stability

  • Ghayesh, Mergen H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.705-718
    • /
    • 2011
  • The aim of the investigation described in this paper is to study the nonlinear parametric vibrations and stability of a simply-supported viscoelastic beam with an intra-span spring. Taking into account a time-dependent tension inside the beam as the main source of parametric excitations, as well as employing a two-parameter rheological model, the equations of motion are derived using Newton's second law of motion. These equations are then solved via a perturbation technique which yields approximate analytical expressions for the frequency-response curves. Regarding the main parametric resonance case, the local stability of limit cycles is analyzed. Moreover, some numerical examples are provided in the last section.

Use of Parametric Generalized Coordinates for Kinematic Constraint Formulation of Low Degree-of-Freedom Joints (저자유도 조인트의 구속조건 생성을 위한 파라메트릭 일반좌표 이용)

  • Lee, Jung Keun;Lee, Chul Ho;Bae, Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1261-1267
    • /
    • 2013
  • In multibody mechanical systems, low-degree-of-freedom (DOF) joints such as revolute and translational joints are much more frequently used than high-DOF joints. In order to formulate kinematic constraint equations, especially for low-DOF joints, in an efficient and systematic manner, this paper presents a parametric generalized coordinate formulation as a new approach for describing constraint equations. In the proposed approach, joint constraint equations are formulated in terms of a mixed set of Cartesian and parametric generalized coordinates, which drastically reduces the complexity and computational cost of the partial derivatives of the constraints such as the constraint Jacobian. The proposed formulation is validated using a simple cylinder-crank system with an implicit integrator.

Dynamic stability of a viscoelastically supported sandwich beam

  • Ghosh, Ranajay;Dharmavaram, Sanjay;Ray, Kumar;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.503-517
    • /
    • 2005
  • The parametric dynamic stability of an asymmetric sandwich beam with viscoelastic core on viscoelastic supports at the ends and subjected to an axial pulsating load is investigated. A set of Hill's equations are obtained from the non-dimensional equations of motion by the application of the general Galerkin method. The zones of parametric instability are obtained using Saito-Otomi conditions. The effects of shear parameter, support characteristics, various geometric parameters and excitation force on the zones of instability are investigated.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Shahsavari, Davood;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this paper, a new size-dependent quasi-3D plate theory is presented for wave dispersion analysis of functionally graded nanoplates while resting on an elastic foundation and under the hygrothermaal environment. This quasi-3D plate theory considers both thickness stretching influences and shear deformation with the variations of displacements in the thickness direction as a parabolic function. Moreover, the stress-free boundary conditions on both sides of the plate are satisfied without using a shear correction factor. This theory includes five independent unknowns with results in only five governing equations. Size effects are obtained via a higher-order nonlocal strain gradient theory of elasticity. A variational approach is adopted to owning the governing equations employing Hamilton's principle. Solving analytically via Fourier series, these equations gives wave frequencies and phase velocities as a function of wave numbers. The validity of the present results is examined by comparing them with those of the known data in the literature. Parametric studies are conducted for material composition, size dependency, two parametric elastic foundation, temperature and moisture differences, and wave number. Some conclusions are drawn from the parametric studies with respect to the wave characteristics.

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

Using parametric reasoning to understand solutions to systems of differential equations

  • Allen, Karen
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.79-92
    • /
    • 2004
  • This paper offers an analysis of how students reasoned with the dynamic parameter time to support their mathematical activity and deepen their understandings of mathematical concepts. This mathematical thinking occurred as they participated in a differential equations class before, during, and instruction on solutions to linear systems of differential equations. Students participated in the following identified mathematical practices related to parametric reasoning during this time period: reasoning simultaneously in a qualitative and quantitative manner, reasoning by moving from discrete to continuous imaging of time, and reasoning by imagining the motion. Examples of this reasoning are provided in this report. Implications of this research include the possibility that instructional activities can build on this reasoning to help students learn about the mathematics of change at the middle school, high school, and the university.

  • PDF

Probabilistic damage detection of structures with uncertainties under unknown excitations based on Parametric Kalman filter with unknown Input

  • Liu, Lijun;Su, Han;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.779-788
    • /
    • 2017
  • System identification and damage detection for structural health monitoring have received considerable attention. Various time domain analysis methodologies based on measured vibration data of structures have been proposed. Among them, recursive least-squares estimation of structural parameters which is also known as parametric Kalman filter (PKF) approach has been studied. However, the conventional PKF requires that all the external excitations (inputs) be available. On the other hand, structural uncertainties are inevitable for civil infrastructures, it is necessary to develop approaches for probabilistic damage detection of structures. In this paper, a parametric Kalman filter with unknown inputs (PKF-UI) is proposed for the simultaneous identification of structural parameters and the unmeasured external inputs. Analytical recursive formulations of the proposed PKF-UI are derived based on the conventional PKF. Two scenarios of linear observation equations and nonlinear observation equations are discussed, respectively. Such a straightforward derivation of PKF-UI is not available in the literature. Then, the proposed PKF-UI is utilized for probabilistic damage detection of structures by considering the uncertainties of structural parameters. Structural damage index and the damage probability are derived from the statistical values of the identified structural parameters of intact and damaged structure. Some numerical examples are used to validate the proposed method.