• Title/Summary/Keyword: parametric equations

Search Result 545, Processing Time 0.029 seconds

Free Vibrations of Circular Strip Foundations with Variable Breadth (변화폭 원호형 띠기초의 자유진동)

  • Lee, Byong-Koo;Huh, Young;Lee, Jong-Kook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper deals with the free vibration analysis of circular strip foundations with the variable breadth. Taking into account effects of both rotatory inertia and shear deformation, differential equations governing free vibrations of such foundations are derived. The Winkler foundation is chosen as the model of soil foundation. The breadth of strip foundation is assumed to be a linear function. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the strip foundations with the hinged-hinged, hinged-clamped. clamped-hinged and clamped-clamped end constraints are considered. The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

Effects of Shear Deformations on Buckling Loads of Tapered Columns (전단변형이 변단면기둥의 좌굴하중에 미치는 영향)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.56-63
    • /
    • 1994
  • The nondimensional differential equations governing the buckling loads of tapered columns and its houndarv conditions are derived, in which the effects of shear deformations are included. These equations are solved numerically using a numerical integration technique and a bracketing method to obtain the buckling loads of columns. Four types of cross-sectional shape with clamped-free end constraint are used in the numerical examples. The parametric studies of shear deformation effects on the buckling loads such as cross-sectional shape factor, shear coefficient, ratio of modulus of elasticity, slenderness ratio and section ratio are reported in tables and figures.

  • PDF

Reliability-based modeling of punching shear capacity of FRP-reinforced two-way slabs

  • Kurtoglu, Ahmet Emin;Cevik, Abdulkadir;Albegmprli, Hasan M.;Gulsan, Mehmet Eren;Bilgehan, Mahmut
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • This paper deals with the reliability analysis of design formulations derived for predicting the punching shear capacity of FRP-reinforced two-way slabs. Firstly, a new design code formulation was derived by means of gene expression programming. This formulation differs from the existing ones as the slab length (L) was introduced in the equation. Next, the proposed formulation was tested for its generalization capability by a parametric study. Then, the stochastic analyses of derived and existing formulations were performed by Monte Carlo simulation. Finally, the reliability analyses of these equations were carried out based on the results of stochastic analysis and the ultimate state function of ASCE-7 and ACI-318 (2011). The results indicate that the prediction performance of new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow (층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석)

  • 최형집;오준성;이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

Free Vibrations of Curved Beams with Elastic Springs (스프링으로 탄성 지지된 곡선보의 자유진동)

  • 이병구;진태기;이태은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.875-880
    • /
    • 2001
  • This paper deals with the free vibrations curved beams with elastic springs. Taking into account the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which each elastic spring is modeled as a discrete Winkler foundation with very short longitudinal length. Differential equations are solved numerically to calculate natural frequencies and mode shapes. In numerical examples, the circular, parabolic, sinusoidal and elliptic curved members are considered. The parametric studies are conducted and the lowest four frequency parameters are reported in tables and figures as the non-dimensional fonns. Also the typical mode shapes are presented.

  • PDF

Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams

  • Mirjavadi, Seyed Sajad;Afshari, Behzad Mohasel;Shafiei, Navvab;Hamouda, A.M.S.;Kazemi, Mohammad
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • The thermo-mechanical vibration behavior of two dimensional functionally graded (2D-FG) porous nanobeam is reported in this paper. The material properties of the nanobeam are variable along thickness and length of the nanobeam according to the power law function. The nanobeam is modeled within the framework of Timoshenko beam theory. Eringen's nonlocal elasticity theory is used to develop the governing equations. Using the generalized differential quadrature method (GDQM) the governing equations are solved. The effect of porosity, temperature distribution, nonlocal value, L/h, FG power indexes along thickness and length and are investigated using parametric studies.

Nonlinear Dynamic Analysis of Vehicle-Bridge Interaction considering the Hertzian Contact Spring and Rail Irregularities (헤르쯔 접촉스프링과 레일 요철을 고려한 차량-교량 동적상호작용 비선형 해석)

  • Kang, Young-Jong;Neuyen, Van-Ban;Kim, Jung-Hun;Kang, Yoon-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1478-1485
    • /
    • 2010
  • In this paper, the nonlinear dynamic response of Vehicle-Bridge interaction with the coupled equations of motion including nonlinear Hertzian contact is presented. The moving train model is chosen to have 10 degrees of freedom (DOF). The bridge is modeled as 2D Euler-Bernoulli beam element with 4 DOF for each element, two for rotations and another two for translations. The nonlinear Hertzian contact is used to simulate the interaction between vehicle and bridge. Base on the relationship of wheel displacement of the vehicle and the vertical displacement of the bridge in Hertzian contact, the coupled equations of motion of the whole system is derived. The convenient formulation was encoded into a computer program. The contact forces, contact area and stress of the rail surface were also computed. The accuracy and efficiency of the proposed program are verified and compared with exact analytical solution and other previous studies. Various numerical examples and parametric studies have demonstrated the versatility and applicability of the proposed program.

  • PDF

Energy Regression Analysis for Economic Evaluation of Cooling Plants (냉방열원의 경제성 평가를 위한 건물에너지 회귀식 산출)

  • 김영섭;김강수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.377-384
    • /
    • 2002
  • For economic evaluation of cooling plant equipments, it is necessary to simplify energy Prediction method, which should includes efficiency corrected by part-load ratio. This study proposed simplified method with regression equations of time-average partial loads and refrigerator capacity. DOE-2 Program was used to carry out a parametric study of twelve design variables. Five input variables were considered to be significant and were used in the regression equations. To test accuracy of simplified method, calculated results were compared with DOE-2 simulated results. Test result showes a good agreement with the simulation result with an error of 5.9∼7.6%. It is expected that this method can be used as an easy prediction tool for comparing energy use of different cooling plants during the early design stage.

Dynamic Stability Analysis of Axially Oscillating Cantilever Beams with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.718-723
    • /
    • 2000
  • Dynamic stability of an axially oscillating cantilever beam with a concentrated mass is investigated in this paper. The equations of motion are derived and the derived equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Under certain conditions of the frequency and the amplitude of oscillating motion, parametric instabilities may occur. The multiple scale perturbation method is employed to obtain the stability analysis results. It is found that the system stability varies with the magnitude or the location of the concentrated mass. Instability increases as the concentrated mass approaches to the free-end or its magnitude increases.

  • PDF

A fluid transient analysis for the propellant flow in a monopropellant propulsion system (단일추진제 추진시스템의 과도기유체 해석)

  • Chae J. W.;Han C. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.173-181
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted using the method of characteristics (MOC). Algebraic simultaneous equations method and Clamor's rule method utilized to drive the compatible and characteristic equations are reviewed to understand MOC more extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. Also this work describes the reason that the propulsion system of Koreasat 1 has no orifice to control flow transients or to limit the initial hydrazine flow rate for the first-pulse firing.

  • PDF