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A fluid transient analysis for the propellant flow
in a monopropellant propulsion system

J. W. Chae and C. Y. Han

A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted
using the method of characteristics (MOC). Algebraic simultaneous equations method and Cramer’s rule
method utilized to drive the compatible and characteristic equations are reviewed to understand MOC
more extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is
carried out through parametric studies. Also this work describes the reason that the propulsion system of
Koreasat 1 has no orifice to control flow transients or to limit the initial hydrazine flow rate for the
first-pulse firing.
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flow in a satellite propulsion system is needed to
verify the design of propulsion system. This work

1. Introduction

Fluid transient analysis essentially consists of
solving the governing equations for a wide variety
of boundary and initial conditions, and system
topologies. The equations cannot be analytically
solved, so many methods have been developed
over the years. The method of characteristics is
usually adopted for transient phenomena. Its
strong point is to transform the two partial
differential equations (PDEs) of continuity and
momentum conservations into four ordinary
differential equations (ODEs) that are solved
numerically using finite difference techniques [1, 2,
3l
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is not to verify the design of propulsion system of
Koreasat 1 but to identify it through parametric
studies. Main parameter is the thruster valve
operation time, and given conditions are pipeline
materials and number of pressure drop devices
(ie. filters, latching isolation valves, etc.) and
pipelines and their lengths. They are fully
considered in a model to analyze fluid transients.
Algebraic simultaneous equations method and
Cramer’s rule method utilized to drive the
compatible and characteristic equations are
reviewed to understand the MOC extensively

2. Derivations

2.1 Basic differential equations for transient
fiow

The one-dimensional unsteady pressure flow
equations are given by
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gH, +V, +2—fD—V|V|=0 )

2

H+Zv =0 )
g

The momentum equation (1) and continuity
equation (2) form a pair of quasilinear hyperbolic
partial differential equations in terms of two
dependent variables, velocity V) and
hydraulic-grad-line elevation (H), and two
independent variables, distance along the pipe (x)
and time (t). The equations are transformed into
four ordinary differential equations by using the
method of characteristics. The subscripts x and t
denote partial differentiation (i.e., Hx=0d H/3x). In
the following section the derivation of four
ordinary differential equations are reviewed and
based on [1] and [4] in order to understand the
method of characteristics more extensively.

2.1 Algebraic simultaneous equations and
calculus

The simplified equations of motion and
continuity are identified as Li and Lz [from Eqgs.
(1) and (2))

f
LI=ng+l/l +—2—BV|VI=0 (3)
a2
L=H+—V, =0 4
g

These equations are combined linearly using an
unknown multiplier A:

L=L+1L,
= gH, +¥, +——V|V|+;{H +L V)
N (5)
_,1(H +HJ (V,A“—+V,)+—V|V|
A g 2D
=0

Any two real, distinct values of A will again

yield two equations in terms of the two dependent
variables H and V that are in every way the
equivalent of Egs. (1) and (2). Appropriate
selection of two particular values of M leads to
simplification of Eq. (5). In general, both variables
H and V are functions of x and t. If the
independent variable x is permitted to be a
function of t, then, from total differential of

calculus,
ﬁ:Hxﬂ.;.H‘ av in‘x_.'.V' (6)
dt dt & dt

Now, by examination of Eq. (5) with Egs. (6)
in mind, it can be noted that if

dc g _Ad’
i . (7N
Eq. (5) becomes the ordinary differential
equation
dH dV f
—_— VV
dt dt I | ®

The solution of Eq. (7) yields the two particular
values of A,

A==% ()]

a oo

By substituting these values of A back into Eq.
(7), the particular manner in which x and t are
related is given:

dx
e +a (10)
This shows the change in position of a wave
related to the change in time by the wave
propagation velocity a. When the positive value of
A is used in Eq. (7), the positive value of M must
be used in Eq. (8). A similar parallelism exists for
the negative A. The substitution of these values of
A into Eq. (8) leads to two pairs of equations
which are grouped and identified as C+ and C-
equations.
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gdH  dV |

~—VW|=0 11
C*: a dt dt I I 1y
" dx
i~
1 V
g AV I L_yl=0 (13)
c-.1 @ dt dt 2D
%=—a (14)

Thus two real values of A have been used to
convert the original two partial differential
equations to two total (ordinary) differential
equations, Eqgs. (11) and (13), each with the
restriction that it is valid only when the respective
Eqgs. (12) and (14) are valid.

It is convenient to visualize the solution as it
develops on the independent variable plane (ie,
the xt plane). Inasmuch as a is generally constant
for a given pipe. Eq. (12) plots as a straight line
on the xt plane; and similarly, Eq. (14) plots as a
different straight line as shown in Fig. 1. These
lines on the xt plane are the ”“characteristic” lines
along which Egs. (11) and (14) are valid. The
latter equations are referred to as compatibility
equations, each one being valid only on the
appropriate characteristic line. No mathematical
approximations have been made in this
transformation of the original partial differential
equations. Thus every solution of this set will be
a solution of the original system given by Eqgs.
(3) and (4).

Fig.l Characteristic lines in the xt plane
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2.3 A method based on Cramer’s rule
Rearrange the system of quasi-linear equations
given Egs. (1), (2) and (6) as

f
H +V,=—==VV 15
g X t 2D I I ( )
aZ
H +—V, =0 (16)
g
dH = H dx+ H dt amn
dv =V dx+V,dt (18)

Eqgs. (15) through (18) constitute a system of
four linear equations with four unknowns (H,, H,,
Vx, and V). These equations can be written in
matrix form as

g 0 0 1 7
o [ ———Vm
0 1 — O|H,
g v = (19)
dc dt 0 of"s dH
0 0 dx dr| V] dv
Let [A] denote the coefficient matrix.
g 0 0 1]
2
0 1 £ o
[4]= g (20)
dc dt 0 0
0 0 dr dt]

Let us solve Eq. (19) for the unknown H,,
using Cramer's rule. To do this, we define the
matrix [Bl as the matrix [A] with its first column
replaced by the column vector on the right-hand
side of Eq. (19), ie,

F—LV|V| 0 0 1
2D
[B]=| © 1 a? 0 @1
dH dt 0 0
| 4V 0 dx di

Denoting the determinants of [A] and [B] by
lAl and |Bl, respectively, Cramer’s rule gives the
solution for Hy as
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= I AI (22)
Recall from linear algebra that, if a square

coefficient matrix for a set of n linear equations
has a vanishing determinant, then a necessary
condition for finite solutions to exist is that when
the RHS is substituted for any column of the
coefficient matrix, the resulting determinant must
also vanish (cf., the Cramer’'s rule for solving
linear systems of equations).

If only |A|l were zero, then Hx would be infinite.
However, the definition of a characteristic line
states that Hx be indeterminant along the
characteristic, not infinite. Thus, for Hx to be
indeterminant, |B! in Eq. (22) must also be zero.
Then, Hx is of the form

_IB_o
x I A| - 0 (23)
namely, an indeterminant form which can have a
finite value. Hence, from Eqs. (20) and (21)

g 0 0 1
2
01 £ o
|4 = g |=0 (24)
d dt 0 0
0 0 dx dt
Ly o 0 1
2D
a2
dH dt 0 0
dv 0 dx dt

Expansion of the determinant in Eq. (24) yields
a characteristic line as Eq. (10)..  Expansion of the
determinant in Eq. (25) vyields an ordinary
differential equation in term of dH and dV, where
dx and dt are restricted to hold along a
characteristic line. The equation for the dependent
variables H and V which comes from Eq. (25) is
called the compatibility equation as Eqs (11) and

(13). It is an equation involving the unknown
dependent variables which holds only along the
characteristic line; the advantage of this
compatibility equation is that it is in one less
dimension than the original partial differential
equations. Since the governing equations given in
this paper are partial differential equations in two
dimensions, then the compatibility equation is in
one dimension-hence it is an ordinary differential
equation-and the "one dimension” is along the
characteristic direction.

2.3 A method based on eigenvalues of the
system
The eigenvalue method is based on a display of
the system of partial differential equations, Egs.
(1) and (2) written in column vector form.
Defining W as the column vector

w=|H (26)
N

the system of equation given by Egs. (1) and (2)
can be written as

g 0 f
> |ow [O 1]aw -L |
LI b - =| 2D @0
0 g | L1 o 0
or
ow ow |- L
K12 + 12 =| 35"V o

0

where [K] and [M] are the appropriate 2 x 2
matrices in Eq. (27). Multiplying Eq. (27) by the
inverse of [K], we have

f
W e _kp| ==V
— +[kT'[M] = [KT[ 2B } (29)

f
ow + [N]QV_ = [K]" 5D V|V| (30)
6x 8t O

where by definition [N]=[KI'[M]. The eigenvalues
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of [N] are precisely the slopes of the characteristic
lines and determine the classification of the
system. If the eigenvalues are all real, the
equations are hyperbolic. If the eigenvalues are all
complex, the equations are elliptic.

The eigenvalues of [N] is examined as

[N]=[K1"[M]
-1 1
g 0 {o 1 o < 3D
= 0 a_ =
g bo £ 0
a
[N]-2lr]=0 (32)

where [I] is the identity matrix. Hence

g 1L

. &|=0 (33)
-S|

a2

Expanding the determinant, we have

f—?co (34)
or
A=zl
df (35)
T

Rearrange Eq. (30), Egs. (17) and (18) to obtain
the compatibility equation as results

- -

1
1 0 0 = S
g | 2| |-V
2Dg
£ Hi | 7o
0 1 0 = (36)
al 14
d dt 0 of ) dH
v dv
10 0 dx dt]

but this equation is equivalent to Eq. (3-17)
through little manipulation so that it follows the
same procedure to get the compatibility equations.

[ EELCE R X

2.4 Finite Difference Equations

So far the different methods are reviewed and
the two PDEs of continuity and momentum
conservations are transformed into four ODEs
solved numerically wusing finite difference
techniques. It refers parts of FDM to literatures
{1, 4].

3. Fluid transient analysis

3.1 Propuision system of Koreasat 1

It shows schematic of propulsion system of
Koreasat 1 in Fig. 2. It is a hydrazine
monopropellant blowdown subsystem. It is divided
two independent half-systems each capable of
performing all thrusting maneuvers and each
half-system consists of two 0.5 m diameter tanks
supplying fuel for six 0.9 N catalytic rocket engine
assemblies (REAs) and two 04 N electrothermal
hydrazine thrusters (EHTs). A Ti all-welded
manifold network include latching valves, fill and
drain valves, filters, pressure and temperature
instrumentation, and thermal control equipment.
Each half-system will have a normally-open latch
valve (LV1 and LV2) which can be closed in the
event of leak to isolate the tanks of half-system

from its thrusters. The cross-over lines are

normally closed off by the latching valves (LV3
and LV4), which can be opened if one thruster set
must be isolated due to leakage [5].
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Fig. 2 Schematic of propulsion system
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3.2 Thruster valve operations 1 S s S S S s .
——— Vave 1ms
The thruster inlet pressure range of the T Vaeiom

REAs is from 400 psia to 80 psia and EHTSs, 350
psia to 85 psia as shown in the Table 1. The
response times of thruster valve are usually less
than 20 ms, in this work 1 ms, 10 ms and 20 ms
are considered as parameters shown in the Table
2. Other conditions are the pipeline materals,
Ti-3A1-25V and 304L SS, an on/off duty cycle of
250 ms on/750 ms off.

Table 1 Operation and allowable inlet pressure
ranges

Operation inlet

Allowable inlet

Thruster| pressure range pressure range
(psia) (psia)
REA 400 - 80 420 - 70
EHT 350 - 8 350 - 80

In the Table 2 the specific impulse requirements

is shown.

Table 2 Specific Impulse Requirements

Feed Pressure Duty Cycle (s) Isp

Range (psia) On Off (minimum)
350 - 300 0.25 0.75 192
350 - 300 3.00 9.00 216
350 - 100 All others 113
350 - 100 10 [ 82 137

Parametric studies are conducted according to
the Table 3. In Fig. 3 the thruster valve
opening/closing times are shown with 250 ms
On/750 ms Off.

Table 3 Case Studies

Open ratio
o
k]

05 A S S S
0 005 01 0156 ©02 025 03 035 04

Time, s

Fig. 3 Thruster Valve Opening/Closing Operations

3.3 Results

The calculations are conducted for the opening
and closing thruster valves of REA 5, 6, 7, and 8.
But this section shows only the results of REA 8
because of similarities of the results.

3.3.1 Inlet Pressure at 400 psia

Because of thruster valve opening/closing the
fluid flow rate at the Latching Isolation Valve,
LV2 oscillates and the inlet pressure of thruster

valve oscillates as shown Figs. 4 and 5
respectively.
15
——17V 20 ms 81400 psia
1 ———— THR20msaT400psu -4
1
£
H
F-3
2
F:
]
=
05
y i i

Pressure | Thruster valve opening/closing time
(psia) (ms)
400 20 10 1
80 20 10 1

02

04

0.

Time, s

8 08 1

Fig. 4 Mass flow rate of 20 ms at 400 psia
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inlet Pressure, psia
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Time, s

Fig. 5 Inlet Pressure of 20 ms at 400 psia

Because thruster valve opening/closing time is
getting shorter, 10 ms, the oscillation amplitudes
of fluid flow rate and the inlet pressure of
thruster valve are enlarged as shown Figs. 6 and
7, respectively. The inlet pressure difference is
more than 20 psid so it may have negative effects
on the thruster performance.

15 .
i —— LTV 10 ms ai 400 psia
—=—= THR 10 ms at 400 psia }-+

Time, 8

Fig. 6 Mass flow rate of 10 ms at 400 psia
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440 T
THR 10 ms at 400 psia

430 + —
420
i
g
g
£
380
370
380 L i i
o 0.2 04 08 o8 1

Time. s

Fig. 7 Inlet Pressure of 10 ms at 400 psia

In the worst case the thruster valve
opening/closing time is 1 ms, the oscillation
amplitudes of fluid flow rate and the inlet pressure
of thruster valve are so increased as shown in
Figs. 8 and 9, respectively, that the inlet pressure
exceeds the allowable limit in Table 1. The inlet
pressure difference is of more than 60 psid, unless
an proper orifice being installed, it may not run at
this condition.

LTV 1ms at 400 psia
++ o] e THR 1 ms 2t 400 psia |-+

Mass flow rate, lbm/min

Time, s

Fig. 8 Mass flow rate of 1 ms at 400 psia
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Inlet Pressure, psia
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Fig. 9 Inlet Pressure of 1 ms at 400 psia

3.3.2 Inlet Pressure at 80 psia

The inlet pressure of thruster valve is reduced
to 80 psia. But the fluctuation of the fluid flow
rate and the inlet pressure of thruster valve at 80
psia case are similar to the results of 400 psia as
shown in Figs. 10 to 15, respectively.

08 r
——— LTV 20 ms at 80 psia
~=~=== THR 20 ms &t 80 psia |.4

04

!
02 L e

Mass flow rate, lbm/min
o
A e

02

[ 0.2 04 06 08 1

Time, s

Fig. 10 Mass flow rate of 20 ms at 80 psia

Inlet Prassure, psia

T T
H THR 20 ms at 80 psa

70

0.2 04 08 08 1

Time, s

Fig. 11 Inlet Pressure of 20 ms at 80 psia

Mass flow rate, torm/min

Fig.

Indot Pressure, psia

08

04

——LTv 10 ms at & psia
=~ THR 10 ms at 80 .
___‘___—I =

0.2

04

Time, s

12 Mass flow rate of 10 ms at 80 psia

100

THR 10 ms ai 80 psia

H
02 04 L1} o8 1

Time, s

Fig. 13 Inlet Pressure of 10 ms at 80 psia
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LTV 1 ms at 80 psia
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Mass flow rate, Ibm/min

04 —L i L

Time, s

Fig. 14 Mass flow rate of 1 ms at 80 psia

100 T

H ~——THR 1 ms at 80 psia

Inlet Pressure, psia

Time, s

Fig. 15 Inlet Pressure of 1 ms at 80 psia

4. Conclusion

This work is to review the different derivation
methods that result in the same compatible and
characteristic equations in order to understand the
method of characteristics extensively.

This work is done for the identification of
fluid transient phenomena of Koreasat 1 through
parametric studies. The valve response time is one
of the dominant parameters governing the fluid
transient phenomena. The results show that
shorter closing time induces the greater pressure
response amplitude.

36N U | i

Naturally Koreasat 1 has no orifice, as shown
in Fig. 2, to control flow transients or to limit the
tnitial hydrazine flow rate for the first-pulse firing
because the propulsion system is designed to
endure flow transients to some extent and it has
launched with the hydrazine filled to the thruster
valves. If a propulsion system in transfer orbit
operation fills out the lines, which being made in
highly vacuum, with hydrazine, the hydrazine
moves at very high velocity due to hugh pressure
difference. When the hydrazine reaches the
thruster valves, the deceleration shock can be
energetic enough to decompose the hydrazine. To
avoid this problem, orifices are required in the
propellant lines to limit the initial propellant flow
rate [6].
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