• Title/Summary/Keyword: parametric equations

Search Result 543, Processing Time 0.028 seconds

PARAMETRIC EQUATIONS OF SPECIAL CURVES LYING ON A REGULAR SURFACE IN EUCLIDEAN 3-SPACE

  • El Haimi, Abderrazzak;Chahdi, Amina Ouazzani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.225-236
    • /
    • 2021
  • In this paper, we determine position vector of a line of curvature of a regular surface which is relatively normal-slant helix, with respect to Darboux frame. Then, a vector differential equation is established by means Darboux formulas, in the case of the geodesic torsion is vanishes. In terms of solution, we determine the parametric representation of a line of curvature which is relatively normal-slant helix, with respect to standard frame in Euclidean 3-space. Thereafter, we apply this result to find the position vector of a line of curvature which is isophote curve.

SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners

  • Ahmadi, Hamid;Imani, Hossein
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • The majority of tubular joints commonly found in offshore jacket structures are multi-planar. Investigating the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works. However, due to the diversity of joint types and loading conditions, a number of quite important cases still exist that have not been studied thoroughly. Among them are internally ring-stiffened two-planar TT-joints subjected to axial loading. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available numerical and experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in two-planar tubular TT-joints reinforced with internal ring stiffeners subjected to two types of axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new SCF parametric equations for the fatigue analysis and design of axially-loaded two-planar TT-joints reinforced with internal ring stiffeners.

Parametric Instability Boundaries for Spatial Subharmonics in Photorefractive Moving Gratings: Theory and Experiments

  • Kwak, Chong-Hoon;Lee, El-Hang
    • ETRI Journal
    • /
    • v.16 no.4
    • /
    • pp.13-25
    • /
    • 1995
  • We have derived a nonlinear spatiotemporal differential equation for space-charge fields from Kukhtarev’s material equations in a moving coordinate system and obtained the spatial subharmonic instability boundaries by using linear stability analysis. It is also found that there is an analogy between the temporal subharmonic and the spatial subharmonc instabilities in the sense that the governing differential equations describing the instability boundaries are formally identical. The experiments for generating spatial subharmonic waves are performed in a photorefractive $Bi_{12}SiO_{20}$ crystal by using conventional moving grating technique. The threshold detunings are experimentally determined and the results are compared with the theory.

  • PDF

Effects of Shear Deformations on Buckling Loads of Tapered Columns with Both Clamped Ends (전단변형이 양단고정 변단면 기둥의 좌굴하중에 미치는 영향)

  • 이병구;이태은;안대순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.92-99
    • /
    • 2000
  • The nondimensional differential equations governing the buckling loads of tapered columns with both clamped ends and its boundary conditions are derived, in which the effects of shear deformations are included. These equations are solved numerically using a numerical integration technique and a bracketing method to obtain the buckling loads of columns. Four types of cross-sectional shape are considered in the numerical examples. The parametric studies of shear deformation effects on the buckling loads such as cross-sectional shape factor, shear coefficient, ratio of modulus of elasticity, slenderness ratio and section ratio are reported in tables and figures.

  • PDF

Vaporization Characteristics of Supercritical Hydrocarbon Fuel Droplet in Convective Nitrogen Environments (유동이 있는 초임계 질소 환경에서 탄화수소 연료 액적의 기화 특성)

  • Lim Jong-Hyuk;Lee Bong-Su;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1279-1287
    • /
    • 2004
  • The vaporization characteristics of a liquid heptane droplet in a supercritical nitrogen flow are numerically studied. The transient conservation equations of mass, momentum, energy, and species are expressed in an axisymmetric coordinate system. The governing equations are solved time marching method with preconditioning scheme. The modified Soave-Redlich-Kwong equation of state is employed for taking account of real gas effects such as thermodynamic non-ideality and transport anomaly. Changing the convective velocity and ambient pressure, several parametric studies are conducted. The numerical results show that the two parameters, Reynolds number and dimensionless combined parameter(${\mu}$s/${\mu}$d)(equation omitted), have influence on supercritical droplet vaporization.

Interpreting Conservativeness in Design Criteria for Flexural Strengthening of RC Structures Using Externally Bonded FRP

  • Kansara, Kunal D.;Ibell, Tim J.;Darby, Antony P.;Evernden, Mark
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.25-36
    • /
    • 2010
  • This paper presents the influence of various flexural strengthening design criteria specified by three important design guidelines (ACI440, TR55, FIB14) on the resulting strength, ductility and conservativeness of FRP strengthened RC elements. Various generalised mathematical relations in non-dimensional form are presented that can be employed to develop design aids for the FRP-strengthening process. A design methodology is prescribed based on these equations enabling the designer to optimally and intuitively incorporate sufficient ductility while designing for strength. In order to better interpret conservativeness within design codes, four distinct levels of embedded conservativeness are identified, which cover the entire range of sources of conservativeness. Finally, a detailed parametric study is presented, using the proposed design equations and methodology, to determine the influence of each of these four levels of conservativeness on final design solutions. Specific criteria that are useful while calibrating design guidelines are also presented.

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.877-882
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam stucture is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively targe unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

  • PDF

Numerical Study on Mixing Performance of Straight Groove Micromixers

  • Hossain, Shakhawat;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • Numerical analyses have been performed to investigate the effects of geometric parameters of a straight groove micromixer on mixing performance and pressure drop. Three-dimensional Navier-Stokes equations with two working fluids, water and ethanol have been used to calculate mixing index and pressure drop. A parametric study has been carried out to find the effects of the number of grooves per cycle, arrangement of patterned walls, and additional grooves in triangular dead zones between half cycles of grooves. The three arrangements of patterned walls in a micromixer, i.e., single wall patterned, both walls patterned symmetrically, and both walls patterned asymmetrically, have been tested. The results indicate that as the number of grooves per cycle increases the mixing index increases and the pressure drop decreases. The microchannel with both walls patterned asymmetrically shows the best mixing performance among the three different arrangements of patterned walls. Additional grooves confirm the better mixing performance and lower pressure drop.

Determination of Regulator Parameters and Transient Analysis of Modified Self-commutating CSI-fed IM Drive

  • Pandey, A.K.;Tripathi, S.M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.48-58
    • /
    • 2011
  • In this paper, an attempt has been made to design the current and speed proportional and integral (PI) regulators of self-commutating current source inverter-fed induction motor drive having capacitors at the machine end and to investigate the transient performance of the same for step changes in reference speed. The mathematical model of the complete drive system is developed in closed loop, and the characteristic equations of the systems are derived using perturbation about steady-state operating point in order to develop the characteristic equations. The D-partition technique is used for finding the stable region in the parametric plane. Frequency scanning technique is used to confirm the stability region. Final selection of the regulator parameters is done by comparing the transient response of the current and speed loops for step variations in reference. The performance of the drive is observed analytically through MATLAB simulation.

Free Vibrations of Horizontally Curved Beams with Multiple Elastic Springs (여러 개의 스프링으로 탄성 지지된 수평 곡선보의 자유진동)

  • 이병구;진태기;최규문;이태은
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.101-107
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams with mu1tiple elastic springs. Taking into account the effects of rotatory Inertia and shear deformation. differential equations governing the free vibrations of such beams are derived, In which each e1astic spring is modeled as a discrete Winkler foundation with very short longitudinal length. Differential equations are solved numerically to calculate natural frequencies and mode shapes. In numerical examples, the circular, Parabolic. sinusoidal and elliptic curved beams are considered. The parametric studies are conducted and the lowest four frequency parameters are reported In tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF