• Title/Summary/Keyword: parameters back analysis

Search Result 350, Processing Time 0.025 seconds

A Study on the Visualization of Electrohydrodynamic Spray Flow in High DC Voltages (고전압 직류전기장에서 전기수력학적 분무 유동 가시화에 관한 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.131-139
    • /
    • 2006
  • An experimental study was performed to investigate the liquid breakup and atomization characteristics in electrohydrodynamic atomization according to the changing of experimental parameters such as nozzle size, fluid flow, and electrical intensity. An original electrohydrodynamic atomizer equipment was designed and manufactured for the analysis of spray visualization and the exploration of relationship between applied power and the behavior of liquid atomization. The image processing technique by using the back-illumination method was applied to visualize the distilled liquid breakup process and to examine the variation of the droplet size distribution. The results show that the spray modes of electrohydrodynamic atomization are closelyconnected by the strength of the electric stresses at the surface of the liquid film and the kinetic energy of the liquid jet leaving the needle tip.

  • PDF

Nonlinear analysis using load-displacement control

  • Kwon, Young-Doo;Kwon, Hyun-Wook;Lim, Beom-Soo
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.153-172
    • /
    • 2005
  • A new load/displacement parameter method is proposed for the simultaneous control of applied loads and structural displacements at one or more points. The procedure is based on a generalized Riks' method, which utilizes load/displacement parameters as scaling factors to analyze post-buckling phenomena including snap-through or snap-back. The convergence characteristics are improved by employing new relaxation factors through an incremental displacement parameter, particularly in a region that exhibits severe numerical instability. The improved performance is illustrated by means of a numerical example.

A Study on Evaluation of Modulus of Horizontal Subgrade Reaction through Field Test and Numerical Analysis (현장시험과 수치해석을 통한 수평지반반력계수 산정에 관한 연구)

  • Kang, Byungyun;Park, Minchul;Lee, Sihyung;Jang, Kisoo;Koo, Jagap;Park, Kyunghan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.5-15
    • /
    • 2016
  • For achieving stability and economic construction at a retaining wall construction site, quantitative parameters of soil properties with excavation steps coincides with the actual field site. The main parameters of retaining wall design such as deformation modulus and modulus of horizontal subgrade reaction are common with N value of standard penetration test. Therefore, this study is compared and analyzed about the mutual relationship which is SPT, PBT and PMT for overcoming inconsistency of the existing retaining wall design generalized. In addition, modulus of horizontal subgrade reaction and reduction factor with excavation steps are proposed through back analysis of elasto-plasticity and finite element method with actual field monitoring data. Finally, it is purpose that parameter errors are reduced for applying effective retaining wall design at a construction small and medium-sized.

Improvement Effect on Design Parameters by Pressure Grouting Applied on Micro-piling for Slope Reinforcement (가압식 마이크로파일로 보강된 사면의 설계인자 개량효과)

  • Hong, Won-Pyo;Han, Hyun-Hee;Choi, Yong-Ki;Hong, Ik-Pyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.163-170
    • /
    • 2005
  • In this paper, the rock bolts, soil nails with filling grout and the micro-piling with injecting grout by pressure were applied for the stabilization of the cut slopes consisting of sedimentary rocks, igneous rocks and metamorphic rocks respectively. The field measurements and 3-D FEM analyses to find out mobilized tensile stresses of the grouted-reinforcing members installed in the drilled holes were executed on each site. With assuming the increments of the cohesive strength in the improved ground, the back analysis using direct calibration approach of changing the elastic modulus of the ground was used to find out the improved elastic modulus which yields the same tensile stresses from field measurements. The results of back analysis show that the elastic modulus of the improved ground were 4 to 6 times as large as the elastic modulus of original ground. Consequently, the design for slope reinforcement to be more rational, it is proposed that not only the improved cohesive strength is to be used in the incremental ranges on well-known previous proposed data, but also the increased elastic modulus which is about 5 times as large as the original elastic modulus is to be considered in design.

  • PDF

Estimation of Final Deformation of Hard Rock Tunnel Using Early Measured Deformation (초기계측치를 이용한 경암 지반내 터널의 최총변위량 예측)

  • 송승곤;양형식;임성식;정소걸
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2002
  • To use the early measured data of tunnel deformation in but analysis, the relationship between these values find final deformation data were studied. Panet\`s exponential and fraction equations successfully approximate the convergence of the hard rock tunnels. Measured deformation data of ID location, $U_{1D}$ show that they can be lilted to linear equations but should not be used to estimate potential deformation before measurement, $C_{0}$. Early measured data $U_{1D}$ $U_{2D}$ , and final deformation $ U_{L}$ showed linear correlations. It proved that estimated data of final deformation from early measured ones can be used as input parameters for back analysis.

A Study on the Design of Low Back Muscle Evaluation System Using Surface EMG (표면근전도를 이용한 허리근육 평가시스템의 설계에 관한 연구)

  • Lee Tae-Woo;Ko Do-Young;Jung Chul-Ki;Kim In-Soo;Kang Won-Hee;Lee Ho-Yong;Kim Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.338-347
    • /
    • 2005
  • A computer-based low back muscle evaluation system was designed to simultaneously acquire, process, display, quantify, and correlate electromyographic(EMG) activity with muscle force, and range of motion(ROM) in the lumbar muscle of human. This integrated multi-channel system was designed around notebook PC. Each channel consisted of a time and frequency domain block, and T-F(time-frequency) domain block. The captured data in each channel was used to display and Quantify : raw EMG, histogram, zero crossing, turn, RMS(root mean square), variance, mean, power spectrum, median frequency, mean frequency, wavelet transform, Wigner-Ville distribution, Choi-Williams distribution, and Cohen-Posch distribution. To evaluate the performance of the designed system, the static and dynamic contraction experiments from lumbar(waist) level of human were done. The experiment performed in five subjects, and various parameters were tested and compared. This system could equally well be modified to allow acquisition, processing, and analysis of EMG signals in other studies and applications.

A Roundness Evaluation of Al-6061 Turning by Orthogonal Table and Multiple Linear Regression (직교배열에 의한 선삭과 회귀분석방법에 의한 Al-6061의 진원도 평가)

  • Jang, Sung-Min;Back, Si-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • This paper on analysis of roundness error after boring turning of Al-6061 materials with CNC lathe. Experiment applying turning parameters is based on experimental design method. A design and analysis of experiments is conducted to study the effects of these parameters on the roundness error using the S/N ratio and analysis of ANOVA. Multiple linear regression analysis is applied to compare experimental with predicted data in consideration of roundness error. To fixation pressure and the opening which are a turning parameter, the cutting depth and feed speed respected the objective attainment of dissertation and to be applied the result they investigated.

Parametric Study on Straightness of Steel Wire in Roller Leveling Process Using Numerical Analysis (수치해석을 이용한 선재 롤러교정공정 주요인자의 직진도 영향 분석)

  • Bang, J.H.;Song, J.H.;Lee, M.G.;Lee, H.J.;Sung, D.Y.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.296-301
    • /
    • 2022
  • In this study, influence of the process parameters of the roller leveling process on the straightness of the steel wire was analyzed using numerical analysis. To construct the numerical analysis model, cross-sectional and longitudinal element sizes, which affect the prediction accuracy of longitudinal stress caused by bending deformation of the steel wire, were optimized, and mass scaling that satisfies prediction accuracy while reducing computational time was confirmed. By using the constructed numerical analysis model, the influence of various process parameters such as input direction of the steel wire, initial diameter of the steel wire, back tension and intermesh on the straightness was confirmed. The simulation result shows that the 3rd and 4th roller of vertical straightener had a significant influence on vertical shape of the steel wire.

Correlation between Trunk Stabilization Muscle Activation and Gait Parameters (몸통 안정화 근육과 보행요소의 상관관계)

  • Chae, Jung-Byung;Jung, Ju-Hyeon
    • PNF and Movement
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Purpose: This study aimed to investigate the correlation between trunk stabilization muscle activation and the parameters of gait analysis in healthy individuals. Methods: Thirty healthy adults (15 male, 15 female) with no history of lower back pain (LBP) or current musculoskeletal and neurological injuries were studied. Trunk stabilization muscle activation (e.g., external oblique, internal oblique, transverse abdominis, erector spinae) were assessed using surface electromyography. To analyze gait, we measured temporal parameters (e.g., gait velocity, single support phase, double support phase, swing phase, and stance phase) and a spatial parameter (e.g., H-H base of support). Results: A statistically significant correlation was found between the internal oblique, transverse abdominis, and erector spinae muscle activity and gait velocity, single support phase, double support phase, swing phase, and stance phase. No statistically significant correlation was found between the external oblique muscle activity and the gait velocity, single support phase, double support phase, swing phase, and stance phase. No statistically significant correlation was found between the external oblique, internal oblique, transverse abdominis, and erector spinae muscle activity and the spatial parameter. Conclusion: This study demonstrated that a relationship exists between trunk stabilization muscle activation and temporal parameter (i.e., gait velocity, single support phase, double support phase, swing phase, and stance phase) during gait analysis. Therefore, the trunk's stabilizer muscles play an important role in the gait of healthy individuals.

The Effect of Resistance Exercise with Vibration Stimulation on Balance and Gait of Experienced Back Pain Adults (진동자극 저항운동이 허리통증 경험자의 균형과 보행에 미치는 영향)

  • Ko, Min-Gyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.221-230
    • /
    • 2020
  • The purpose of this study was to investigate the effect of resistance exercise with vibration stimulation methods on static balance and gait parameters in experienced back pain adults. This study was Three group pretest-posttest design. A total of 30 experienced back pain adults voluntarily participated in the study. Subjects were randomly assigned to the resistance exercise with 8 Hz vibration stimulation(n=10), resistance exercise with 30 Hz vibration stimulation(n=10), and lumbar stabilization exercise groups(n=10). The static balance and the gait parameters, as such stance phase, swing phase, stride length and cadence, were measured using balance measuring equipment and gait analysis treadmill at before and after 6 week. Intervention of each group were performed, three times a week for 6 weeks, and 30 minutes a day. The effect of intervention on static balance, stance phase, swing phase, stride length and cadence were significantly differences after 6 weeks in each group(p<.05). In the comparison of the effects between the groups, static balance and stance phase were significantly difference after 6 weeks(p<.05), but in the swing phase, stride length and cadence, there were no significant differences. As a result, it is considered that resistance exercise with vibration stimulation improved leg muscle strength by a mechanism causing muscle contraction, and the strengthened leg muscle enhanced had a positive effect on balance ability. And improved balance ability was considered a more positive effect on walking ability by allowing the body to stably control posture while moving.