DOI QR코드

DOI QR Code

Nonlinear analysis using load-displacement control

  • Kwon, Young-Doo (School of Mechanical Engineering, Kyungpook National University) ;
  • Kwon, Hyun-Wook (Graduate School, Mechanical Engineering Department, Kyungpook National University) ;
  • Lim, Beom-Soo (Agency for Defense Development)
  • Received : 2004.03.23
  • Accepted : 2004.09.15
  • Published : 2005.01.30

Abstract

A new load/displacement parameter method is proposed for the simultaneous control of applied loads and structural displacements at one or more points. The procedure is based on a generalized Riks' method, which utilizes load/displacement parameters as scaling factors to analyze post-buckling phenomena including snap-through or snap-back. The convergence characteristics are improved by employing new relaxation factors through an incremental displacement parameter, particularly in a region that exhibits severe numerical instability. The improved performance is illustrated by means of a numerical example.

Keywords

References

  1. Bathe, K.J. (1982), Finite Element Procedure in Engineering Analysis, Prentice-Hall
  2. Batoz, J.L. and Dhatt, G. (1979), 'Incremental displacement algorithms for nonlinear problems', Int. J. Num. Meth. Engng., 14,1262-1267 https://doi.org/10.1002/nme.1620140811
  3. Bergan, P.G. (1979), 'Solution algorithms for nonlinear structural problems', Proc. of the Int. Conf. on Engineering Applications of the Finite element Method, H$\phi$ fvik, Norway, A.S., Computas, 1-38
  4. Choi, J.M., Jeong, Y.T., Yun, T.H. and Kwon, Y.D. (1990), 'Finite element analysis of post-buckling phenomena using adaptive load/displacement parameter', KSME, 14(3), 503-512
  5. Chrcielewski, J. and Schmidt, R.A (1985), 'Solution control method for nonlinear finite element post-buckling analysis of structures', Proc. of the EUROMECH Colloquium 200,19-33
  6. Crisfield, M.A (1981), 'A fast incremental/iterative solution procedure that handles snap-through', Comput. Struct., 13, 55-62 https://doi.org/10.1016/0045-7949(81)90108-5
  7. Endo, T., Oden, J.T., Becker, E.B. and Miller, T. (1984), 'A numerical analysis of contact and limit point behavior in a class of problems of finite elastic deformation', Comput. Struct., 18, 899-910 https://doi.org/10.1016/0045-7949(84)90035-X
  8. Haisier, W., Stricklin, J. and Key, J. (1977), 'Displacement incrementation in nonlinear structural analysis by the self-correcting methods', Int. J. Num. Meth. Engng., 11, 3-10 https://doi.org/10.1002/nme.1620110103
  9. Koo, J.S., Lee, B.C. and Kwak, B.M. (1988), 'A study on improving efficiency in computational procedure of finite element nonlinear analysis of plane frame structures', KSME, 12(4), 631-641
  10. Lock, A.C. and Sabir, A.B. (1973), Algorithm for Large Deflection Geometrically Nonlinear Plate and Curved Structures, in Mathematics of Finite Elements and Applications, New York: Academic Press, 483-494
  11. Mondkar, D.P. and Powell, G.H. (1978), 'Evaluation of solution schemes for non-linear structures', Comput. Struct., 223-236
  12. Noor, A.K. and Peters, J.M. (1981), 'Tracing post-limit-point with reduced basis technique', Comput. Meth. Appl. Mech. Eng., 28, 217-240 https://doi.org/10.1016/0045-7825(81)90106-7
  13. Padovan, J. and Tovichakchaikul, S. (1982), 'Self-adaptive predictor-corrector algorithms for static non-linear structural analysis', Comput. Struct., 15,365-377 https://doi.org/10.1016/0045-7949(82)90071-2
  14. Park, J.S. and Kang, Y.J. (2003), 'Lateral buckling of beams with top bracing', Struct. Eng. Mech., 16(5), 613-625 https://doi.org/10.1296/SEM2003.16.05.06
  15. Ramm, E. (1981), 'Strategies for tracing the nonlinear response near limit points', Proc. of the Europe-U.S. Workshop on Nonlinear Finite Element Analysis in Structural Mechanics, Bochum, Germany: Springer-Verlag
  16. Riks, E. (1979), 'An incremental approach to the solution of snapping and buckling problems', Int. J Solids Struct., 15, 529-551 https://doi.org/10.1016/0020-7683(79)90081-7
  17. Riks, E. (1984), 'Some computational aspects of the stability analysis of nonlinear structures', Comput. Meth. Appl. Mech. Eng., 47, 219-259 https://doi.org/10.1016/0045-7825(84)90078-1
  18. Wright, E.W. and Gaylord, E.H. (1968), 'Analysis of unbraced multistory steel rigid frames', Proc. of the ASCE, J Struct. Div., 94, 1143-1163

Cited by

  1. A Finite Element Procedure with Poisson Iteration Method Adopting Pattern Approach Technique for Near-Incompressible Rubber Problems vol.6, 2014, https://doi.org/10.1155/2014/272574
  2. Nonlinear thermoelastic response of laminated composite conical panels vol.34, pp.1, 2010, https://doi.org/10.12989/sem.2010.34.1.097