• Title/Summary/Keyword: parameters back analysis

Search Result 350, Processing Time 0.026 seconds

Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process

  • Kuo Chung-Feng Jeffrey;Su Te-Li
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.404-413
    • /
    • 2006
  • This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

Evaluation on Welding Characteristic of Ni-Cu Sheet by Ultrasonic Machining (초음파 가공에 의한 Ni-Cu 박판의 용착 특성 평가)

  • Back, Si-Young;Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper is studied on the influence of machining conditions on weldability obtained by ultrasonic machining. The weldability estimation of dissimilar Ni-Cu sheets with the optimization of one-wavelength horn is confirmed by the use of ultrasonic machining. The optimal welding condition with tensile test by setting the ultrasonic machining parameters is suggested and the weldability is estimated by SEM observation and EDX-ray analysis. Experimental studies are worked with the measure of tensile strength and the analysis of SEM photograph after the ultrasonic machining of workpiece. Machining parameters of machining time, pressure, and amplitude are also applied to this paper.

Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine (Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

Electromagnetic Analysis and Control Parameter Estimation of Moving-Coil LOA Using Transfer Relations (전자기적 전달관계를 이용한 가동코일형 LOA의 전자기적 특성해석 및 제어정수 도출)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;Park, Ji-Hoon;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.129-131
    • /
    • 2005
  • This paper deals with an electromagnetic analysis and control parameter estimation of a moving-coil linear oscillatory actuator (MCLOA). Analytical solutions for electromagnetic characteristics of the MCLOA are obtained from transfer relations derived in terms of a magnetic vector potential and two-dimensional (2-d) rectangular coordinate systems. And then, on the basis of 2-d analytical solutions, control parameters such as the thrust constant, the back-emf constant and winding inductances are estimated. Finally, analytical results for both electromagnetic characteristics and control parameters of the MCLOA are validated extensively by finite element (FE) analyses. In particular, test results such as static thrust, resistance and inductance measurements are given to confirm the analyses.

  • PDF

Application of Back Analysis for Tunnel Design by Modified In Situ Rock Model (현장암반 모델을 적용한 터널의 역해석)

  • Kim, Hak-Mun;Lee, Bong-Yeol;Hwang, Ui-Seok;Kim, Tae-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.25-36
    • /
    • 2000
  • The purpose of this research work is to propose an analytical method of tunnel design based on reasonable site data. Therefore the proposed design method consists of monitoring data and Modified In Situ Rock Model. Also the Rock Mass Rating for very poor quality rock is very difficult to estimate, the balances between the ratings may no longer gives a reliable basis for the rock mass strength. But in reality Rock Mass Rating is only the property which can be obtained from face mapping records of the exposed tunnel face during construction stage. Evaluation of rock parameters for the actual design prior to tunnel construction should be corrected during tunnelling process in particularly complex ground conditions. This study intends to investigate application of in-situ rock model to soft rock tunnelling (weathered rock) by face mapping results and site measurement data that are obtained at the costraction site of Seoul Subway Tunnel. For the preparation of more reliable ground parameters, the Rock Mass Rating values for the weathered rocks were modified and readjusted in accordance with the measurement data. The modified input parameters obtained by the proposed method are used for the prediction of the tunnel behavior at subsequent construction stages. The results of this study revealed that more reasonable feed back tunnel analysis can be possible as suggested. Ample measurement data would be able to confirm the new proposed technique in this research work.

  • PDF

Estrus Detection in Sows Based on Texture Analysis of Pudendal Images and Neural Network Analysis

  • Seo, Kwang-Wook;Min, Byung-Ro;Kim, Dong-Woo;Fwa, Yoon-Il;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Worldwide trends in animal welfare have resulted in an increased interest in individual management of sows housed in groups within hog barns. Estrus detection has been shown to be one of the greatest determinants of sow productivity. Purpose: We conducted this study to develop a method that can automatically detect the estrus state of a sow by selecting optimal texture parameters from images of a sow's pudendum and by optimizing the number of neurons in the hidden layer of an artificial neural network. Methods: Texture parameters were analyzed according to changes in a sow's pudendum in estrus such as mucus secretion and expansion. Of the texture parameters, eight gray level co-occurrence matrix (GLCM) parameters were used for image analysis. The image states were classified into ten grades for each GLCM parameter, and an artificial neural network was formed using the values for each grade as inputs to discriminate the estrus state of sows. The number of hidden layer neurons in the artificial neural network is an important parameter in neural network design. Therefore, we determined the optimal number of hidden layer units using a trial and error method while increasing the number of neurons. Results: Fifteen hidden layers were determined to be optimal for use in the artificial neural network designed in this study. Thirty images of 10 sows were used for learning, and then 30 different images of 10 sows were used for verification. Conclusions: For learning, the back propagation neural network (BPN) algorithm was used to successful estimate six texture parameters (homogeneity, angular second moment, energy, maximum probability, entropy, and GLCM correlation). Based on the verification results, homogeneity was determined to be the most important texture parameter, and resulted in an estrus detection rate of 70%.

Simple AI Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • 윤성구
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.620-623
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a fedforward recall and error back-propagation training. Since the total number of nodes are only eight this system can be easily realized by the general microprocessor. During the normal operation the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. IN addition the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Singal Processor DS1102 Board (TMS320C31) The basic DSP software is used to write C program which is compiled by using ANSI-C style function prototypes.

  • PDF

Post-buckling analysis using a load-displacement control (하중과 변위의 동시제어에 의한 좌굴후 현상해석)

  • Kwon, Y.D.;Lim, B.S.;Park, C.;Choi, J.M.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1931-1942
    • /
    • 1997
  • A new load/displacement parameter method is developed for the cases that loads are applied to one or more points, and displacements of a structure are controlled at one or more points sinultaneously. The procedure exploits a generalized Riks method, which utilizes load/displacement parameters as scaling factors in order to analyze the post-buckling phenomena including snap-through or snap-back. A convergence characteristic is improved by employing new relaxation factors in incremental displacement parameter, particularly at the region where exhibits severe numerical instability. The improved performance is illustrated by means of numerical example.

Study on the performance improvement of turbopump inducer by numerical flow analysis (수치 유동 해석을 이용한 터보펌프용 인듀서의 성능 향상에 대한 연구)

  • Lee, Kyoung-Hoon;Kim, Kyung-Ho;Kim, Young-Soo;Woo, Yoo-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.235-242
    • /
    • 2001
  • Hydraulic performance of LCH4 fuel inducer in turbopump system was predicted by 3-D Wavier-stokes calculation. The inducer was designed initially using 1-D method. Different parameters with blade angle and flow coefficient were set from the initial design one, md computation was fulfilled to assess the redesigned models. Especially, influence of inlet back flow on inducer performance and its effective control were explored. The numerical results showed that through reducing inlet back flow strength., the hydraulic efficiency of inducer could be improved up to about $20\%$ compared to that of the initial design one.

  • PDF

Mechanical Analysis of 3D Circular Braided Glass Fiber Reinforced Composites Using Elastic-Plastic Constitutive Equations (탄소성 구성 방정식을 이용한 삼차원 브레이드 복합재료의 역학적 해석)

  • Ryou Hansun;Lee Myoung-Gyu;Kim Jihoon;Chung Kwansoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.147-150
    • /
    • 2004
  • In order to describe the mechanical behavior of highly anisotropic and asymmetric materials such as fiber­reinforced composites, the elastic-plastic constitutive equations were used here based on the recently developed yield criterion and hardening laws. As for the yield criterion, modified Drucker-Prager yield surface was used to represent the orthotropic and asymetric properties of composite materials, while the anisotropic evolution of back­stress was accounted for the hardening behavior. Experimental procedures to obtain the material parameters of the hardening laws and yield surface are presented for 3D Circular Braided Glass Fiber Reinforced Composites. For verification purpose, comparisons of finite element simulations using the elastic-plastic constitutive equations, anisotropic elastic constitutive equations and experiments were performed for the three point bending tests. The results of finite element simulations showed good agreements with experiments, especially for the elastic-plastic constitutive equations with yield criterion considering anisotropy as well as asymmetry and anisotropic back stress evolution rule.

  • PDF