• Title/Summary/Keyword: parameter sets

Search Result 339, Processing Time 0.025 seconds

기준점 위치와 미지수 조합에 따른 궤도모델링의 정확도 분석 (Accuracy Analysis of the Orbit Modeling with Various GCP Configurations and Unknown Parameter Sets)

  • 김동욱;김현숙;김태정
    • 대한원격탐사학회지
    • /
    • 제24권2호
    • /
    • pp.133-140
    • /
    • 2008
  • 본 논문에서는 다양한 기준점 배치와 미지수 조합 모델을 이용하여 궤도모델링의 정확도를 검증하고자 하였다. 실험에 사용된 기준점의 개수는 총 152개로 전체 영상 스트립에 포함되는 지역에 대해 GPS 측량을 통해 획득하였다. 전체 스트립 영상의 길이는 춘천지역에서부터 나주지역까지 약 420km 길이에 해당한다. 궤도모델을 위해 적용된 미지수 조합은 위성의 위치와 속도, 자세를 표현하는 방정식의 계수를 미지수로 선택하여 일곱 가지 방식으로 조합하였다. 실험은 우선 모델점의 배치를 일곱 가지 경우로 결정한 후에 각 경우의 배치에 대해 일정한 개수의 모델점을 선택하였다. 그리고 각 모델점의 배치에 따라 미지수 조합 모델을 각각 다르게 적용해 본 후 그 결과를 분석해 보았다. 실험 결과 모델점의 위치에 관계없이 지리적, 시간적, 경제적 효율성을 갖는 최적의 미지수 조합을 찾을 수가 있었다.

Parameter Estimation and Prediction for NHPP Software Reliability Model and Time Series Regression in Software Failure Data

  • Song, Kwang-Yoon;Chang, In-Hong
    • 통합자연과학논문집
    • /
    • 제7권1호
    • /
    • pp.67-73
    • /
    • 2014
  • We consider the mean value function for NHPP software reliability model and time series regression model in software failure data. We estimate parameters for the proposed models from two data sets. The values of SSE and MSE is presented from two data sets. We compare the predicted number of faults with the actual two data sets using the mean value function and regression curve.

조류인플루엔자 바이러스의 양-반응 모형 (Dose-Response Relationship of Avian Influenza Virus Based on Feeding Trials in Humans and Chickens)

  • 박선일;이제용;전종민
    • 한국임상수의학회지
    • /
    • 제28권1호
    • /
    • pp.101-107
    • /
    • 2011
  • This study aimed to determine dose-response (DR) curve of avian influenza (AI) virus to predict the probability of illness or adverse health effects that may result from exposure to a pathogenic microorganism in a quantitative microbial risk assessment. To determine the parametric DR relationship of several strains of AI virus, 7 feeding trial data sets challenging humans (5 sets) and chickens (2 sets) for strains of H3N2 (4 sets), H5N1 (2 sets) and H1N1 (1 set) from the published literatures. Except for one data set (study with intra-tracheal inoculation for data set no. 6), all were obtained from the studies with intranasal inoculation. The data were analyzed using three types of DR model as the basis of heterogeneity in infectivity of AI strains in humans and chickens: exponential, beta-binomial and beta-Poisson. We fitted to the data using maximum likelihood estimation to get the parameter estimates of each model. The alpha and beta values of the beta-Poisson DR model ranged 0.06-0.19 and 1.7-48.8, respectively for H3N2 strain. Corresponding values for H5N1 ranged 0.464-0.563 and 97.3-99.4, respectively. For H1N1 the parameter values were 0.103 and 12.7, respectively. Using the exponential model, r (infectivity parameter) ranged from $1.6{\times}10^{-8}$ to $1.2{\times}10^{-5}$ for H3N2 and from $7.5{\times}10^{-3}$ to $4.0{\times}10^{-2}$ for H5N1, while the value was $1.6{\times}10^{-8}$ for H1N1. The beta-Poisson DR model provided the best fit to five of 7 data sets tested, and the estimated parameter values in betabinomial model were very close to those of beta-Poisson. Our study indicated that beta-binomial or beta-Poisson model could be the choice for DR modeling of AI, even though DR relationship varied depending on the virus strains studied, as indicated in prior studies. Further DR modeling should be conducted to quantify the differences among AI virus strains.

On-Line Aircraft Parameter Identification Using Fourier Transform Regression With an Application to NASA F/A-18 Harv Flight Data

  • Song, Yongkyu;Song, Byungheum;Seanor, Brad;Napolitano, Marcello R.
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.327-337
    • /
    • 2002
  • This paper applies a recently developed on-line parameter identification (PID) technique to sets of real flight data and compares the results with those of a state-of-the-art off-line PID technique. The on-line PID technique takes Linear Regression from Fourier Transformed equations and the off-line PID is based on the traditional Maximum Likelihood method. Sets of flight data from the NASA F/A-18 High Alpha research Vehicle (HARV) circraft, which has been recorded from specifically designed maneuvers and used for our line parameter estimation, are used for this study. The emphasis is given on the accuracy and on-line measure of reliability of the estimates. The comparison is performed for both longitudinal and lateral-directional dynamics for maneuvers at angles of attack ranging u=20°through $\alpha$=40°. Results of the two estimation processes are also compared with baseline wind tunnel estimates whenever possible.

Classification of Pathological Voice Using Artigicial Neural Network with Normalized Parameters

  • Li, Tao;Bak, Il-Suh;Jo, Cheol-Woo
    • 음성과학
    • /
    • 제11권1호
    • /
    • pp.21-29
    • /
    • 2004
  • In this paper we examined the effect of normalization on discriminating the pathological voice into normal and abnormal classes using artificial neural network. Average values per each parameter were used to normalize each set of parameter values. Artificial neural networks were used as classifiers. And the effect of normalization was evaluated by comparing the discrimination results between original and normalized parameter sets.

  • PDF

Estimation in Mixture of Shifted Poisson Distributions

  • Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1209-1217
    • /
    • 2006
  • For the mixture of shifted Poisson distributions, a method of parameter estimation is proposed. The range of the shifted parameters are estimated first and for each shifted parameter set EM algorithm is applied to estimate the other parameters of the distribution. Among the estimated parameter sets, one with minimum likelihood for given data is to be set as the final estimate. In simulation experiments, the suggested estimation method shows to have a good performance.

  • PDF

신경 회로망 학습을 통한 모델 선택의 자동화 (Automation of Model Selection through Neural Networks Learning)

  • 류재흥
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.313-316
    • /
    • 2004
  • Model selection is the process that sets up the regularization parameter in the support vector machine or regularization network by using the external methods such as general cross validation or L-curve criterion. This paper suggests that the regularization parameter can be obtained simultaneously within the learning process of neural networks without resort to separate selection methods. In this paper, extended kernel method is introduced. The relationship between regularization parameter and the bias term in the extended kernel is established. Experimental results show the effectiveness of the new model selection method.

  • PDF

공통원인 고장분석을 위한 전산 코드 개발 (Development of a Computer Code for Common Cause Failure Analysis)

  • Park, Byung-Hyun;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.14-29
    • /
    • 1992
  • 원자력 발전소에서 발생하는 공통원인 고장을 분석하기 위한 컴퓨터 코드 COMCAF를 개발하였다. 공통원인 고장을 다룰 때, 먼저 계통의 최소 단절집합들을 공통원인 기본사상들이 고려되지 않은 고장수목으로부터 구한다. 그리고, 공통원인 고장들이 같은 최소 단절집합내의 부품들간에 있는지 또는 서로 다른 최소 단절집합들의 부품들간에 있는지를 고려하여 이들 최소 단절집합들의 발생 확률값을 계산한다. 유사하거나 동일한 부품들간에 공통원인 고장이 있을때는 Basic Para-meter 모델을 사용한다. 그러나, 서로 다른 부품들간에 공통원인 고장이 있을때는 Basic Para-meter모델에 쓰인 Symmetry Assumption을 두개 이상의 부품에 영향을 주는 기본사상들에만 적용한다. Inclusion-Exclusion방법을 사용하여 정점사상확률간을 구한다. 이 경우 같은 최소 단절 집합들에 있는 부품들의 공통원인 고장뿐만아니라 서로 다른 최소 단절집합들에 있는 부품들의 공통원인 고장도 쉽게 고려될 수 있다. 본 연구에서는 이러한 공통원인 고장분석을 가압경수로의 보조 급수계통에 적용하였다. 이들 정점사상의 확률값들을 공통원인 고장이 없는 경우와 비교하였다.

  • PDF

AN APPROPRIATE INFLOW MODEL FOR SIMULTANEOUS DISSOLUTION AND DEGRADATION

  • Lee, Ju-Hyun;Kang, Sung-Kwon;Choi, Hoo-Kyun
    • 호남수학학술지
    • /
    • 제31권1호
    • /
    • pp.109-124
    • /
    • 2009
  • Based on the observed data for Clarithromycin released, three commonly used inflow models: the power, the exponential, and the logarithmic models are considered. Among them, the power model is used most in practice for simplicity. Using the numerical parameter estimation techniques, the parameters appeared in the model equations are estimated. Through the numerical estimation results using the several experimental data sets, the exponential model turns out to be best among the three models. More specifically, the sum of squares of absolute errors and the sum of squares of relative errors for the exponential model are reduced by 80-95 % for the experimental data sets and 60-90 % for the noise added data sets compared with those for the power and logarithmic models. A typical experimental data set is used in this paper to show the estimation method and its numerical results. The proposed numerical method and its algorithm are designed for estimating the parameters appeared in the model differential equations for which the exact form of the solution is unknown in general. The methodology developed can be applied to more general cases such as the nonlinear ordinary differential equations or the partial differential equations.

A Study on Mobile Robot Navigation Using a New Sensor Fusion

  • Tack, Han-Ho;Jin, Tae-Seok;Lee, Sang-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.471-475
    • /
    • 2003
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations. Finally, the new space and time sensor fusion (STSF) scheme is applied to the control of a mobile robot in an unstructured environment as well as structured environment.

  • PDF