• Title/Summary/Keyword: parameter sensitivity

Search Result 1,005, Processing Time 0.025 seconds

Sensitivity Analysis of Generalized Parameters on Concrete Creep Effects of Composite Section (합성단면의 콘크리트 크리프 효과에 대한 일반화 매개변수의 민감도 분석)

  • Yon, Jung-Heum;Kim, Eui-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.629-638
    • /
    • 2009
  • In this paper, the existing formulas of the step-by-step method were generalized for effective estimation of responses of complicated composite sections due to long-term deformation of concrete. The initial transformed section properties of the composite section were derived from material and section properties of concrete section and sections which confine the longterm deformation of concrete. The transformed section properties at each step were derived from the effective modulus of elasticity considered the creep coefficient variation. Improved formulas of the step-by-step method for generalized responses were derived by introducing 5 generalized parameters. The formulas can be more simplified by applying constant increment of creep coefficient at each step. The constant increment of creep coefficient at each step can also reduce computing time and make equal computing error of each step. The generalized responses for axial elastic strain of concrete section were most sensitive to the area rate of concrete section, and the ratio of the second moment of the confining section area was more sensitive than that of the concrete section. Those for elastic curvature of concrete section were most sensitive to the ratio of the second moment of concrete section area.

Relationship of Participation in Jazz Dance to Body Image and Mental Healt (재즈댄스 참가와 신체상 및 정신건강과의 관계)

  • Choi, Sung-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.196-205
    • /
    • 2008
  • The purpose of this study was to examine the relationship of participation in jazz dance to body image and mental health in an attempt to make a contribution to the spread of jazz dance. The subjects in this study were 183 people who were selected by purposive sampling from a population of Seoul and Gyeonggi province residents who were at the Western age of 18 and up. The selected people took general education courses at colleges, attended cultural centers or fitness clubs, or learned dance for all. One instrument used in this study to assess their body image was Jourard and Secord(1954)'s Body Cathexis Scale, which was modified into six factors and 39 items. The other was Kim Gwang-il, et. al.(1978)'s 46-item inventory, which translated Rickles and Rock(l976)'s SCL-90 with 90 items to suit Korean circumstances. That inventory was modified into 31 items and four factors. For data handling, factor analysis, reliability analysis, regression analysis and path analysis were utilized. The findings of the study were as follows: 1. The extent of jazz dance participation had an impact on their body image. Those who performed jazz dance more frequency had a better image about their health and the lower part of the body. 2. The level of jazz dance participation exerted an influence on their mental health. A longer participation term led to more interpersonal sensitivity, and a higher participation frequency was followed by more somatization. 3. Concerning the causal relationship of participation in jazz dance to body image and mental health, the participation frequency affected health, the image of the lower part of the body and somatization in the firsthand manner, and the image of the lower part of the body had a firsthand impact on interpersonal sensitivity, hostility, anxiety and depression. Accordingly, the image of the lower part of the body played a crucial role as a parameter in the relationship between the jazz dance participation frequency and mental health.

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding (반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가)

  • Lee, Jae Hyo;Kang, Seung In;Kim, Sang Woo;Yi, Jin Woo;Seong, Dong Gi
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.39-43
    • /
    • 2020
  • Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF

Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models

  • Chikh, Benazouz;Laouami, Nacer;Mebarki, Ahmed;Leblouba, Moussa;Mehani, Youcef;Kibboua, Abderrahmane;Hadid, Mohamed;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • Modern seismic codes rely on performance-based seismic design methodology which requires that the structures withstand inelastic deformation. Many studies have focused on the inelastic deformation ratio evaluation (ratio between the inelastic and elastic maximum lateral displacement demands) for various inelastic spectra. This paper investigates the inelastic response spectra through the ductility demand ${\mu}$, the yield strength reduction factor $R_y$, and the inelastic deformation ratio. They depend on the vibration period T, the post-to-preyield stiffness ratio ${\alpha}$, the peak ground acceleration (PGA), and the normalized yield strength coefficient ${\eta}$ (ratio of yield strength coefficient divided by the PGA). A new inelastic deformation ratio $C_{\eta}$ is defined; it is related to the capacity curve (pushover curve) through the coefficient (${\eta}$) and the ratio (${\alpha}$) that are used as control parameters. A set of 140 real ground motions is selected. The structures are bilinear inelastic single degree of freedom systems (SDOF). The sensitivity of the resulting inelastic deformation ratio mean values is discussed for different levels of normalized yield strength coefficient. The influence of vibration period T, post-to-preyield stiffness ratio ${\alpha}$, normalized yield strength coefficient ${\eta}$, earthquake magnitude, ruptures distance (i.e., to fault rupture) and site conditions is also investigated. A regression analysis leads to simplified expressions of this inelastic deformation ratio. These simplified equations estimate the inelastic deformation ratio for structures, which is a key parameter for design or evaluation. The results show that, for a given level of normalized yield strength coefficient, these inelastic displacement ratios become non sensitive to none of the rupture distance, the earthquake magnitude or the site class. Furthermore, they show that the post-to-preyield stiffness has a negligible effect on the inelastic deformation ratio if the normalized yield strength coefficient is greater than unity.

A Study on the History Matching and Assessment of Production Performance in a Shale Gas Reservoir Considering Influenced Parameter for Productivity (생산 영향인자를 고려한 셰일가스 저류층의 이력검증 및 생산성 평가 연구)

  • Park, Kyung-Sick;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.62-72
    • /
    • 2020
  • This study presents a methodology of history matching to evaluate the productivity of shale gas reservoir with high reliability and predict future production rate in the Horn-River basin, Canada. Sensitivity analysis was performed to analyze the effect of physical properties of shale gas reservoir on productivity. Based on the results, reservoir properties were classified into 4 cases and history matching were performed considering the classified 4 cases as objective function. The blind test was conducted using additional field production data for 3 years after the history matching period. The error of gas production rate in Case 1(all reservoir parameters), Case 2(influenced parameters for productivity), Case 3(controllable parameters), and Case 4(uncontrollable parameters) were 7.67%, 7.13%, 17.54%, and 10.04%, respectively. This means that it seems to be effective to consider all reservoir parameters in early period for 4 years but Case 2 which considered influenced parameters for productivity shows the highest reliability in predicting future production. The estimated ultimate recovery (EUR) of production well predicted using the Case 2 model was estimated to be 17.24 Bcf by December 2030 and the recovery factor compared to original gas in place (OGIP) was 32.2%.

Power Generation Cost Comparison of Nuclear and Coal Power Plants in Year 2001 under Future Korean Environmental Regulations -Sensitivity and Uncertainty Analysis- (미래의 한국의 환경규제여건에 따른 2001년도의 원자력과 석탄화력 발전단가비교 -민감도와 불확실도 분석-)

  • Lee, Byong-Whi;Oh, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.18-31
    • /
    • 1989
  • To analyze the impact of air pollution control on electricity generation cost, a computer program was developed. POGEN calculates levelized discounted power generation cost including additional air pollution control cost for coal power plant. Pollution subprogram calculates total capital and variable costs using governing equations for flue gas control. The costs are used as additional input for levelized discounted power generation cost subprogram. Pollution output for Rue Gas Desulphurization direct cost was verified using published cost data of well experienced industrialized countries. The power generation costs for the year 2001 were estimated by POGEN for three different regulatory scenarios imposed on coal power plant, and by levelized discounted power generation cost subprogram for nuclear power. Because of uncertainty expected in input variables for future plants, sensitivity and uncertainty analysis were made to check the importance and uncertainty propagation of the input variables using Latin Hypercube Sampling and Multiple Least Square method. Most sensitive parameter for levelized discounted power generation cost is discount rate for both nuclear and coal. The control cost for flue gas alone reaches additional 9-11 mills/kWh with standard deviation less than 1.3 mills/kWh. This cost will be nearly 20% of power generation cost and 40% of one GW capacity coal power plant investment cost. With 90% confidence, the generation cost of nuclear power plant will be 32.6-51.9 mills/kWh, and for the coal power plant it will be 45.5-50.5 mills/kWh. Nuclear is favorable with 95% confidence under stringent future regulatory requirement in Korea.

  • PDF

Resolving Line Distortions in Edge Strength Hough Transform (경계선 강도 허프 변환에서 직선 왜곡의 최소화 방안)

  • Heo, Gyeong-Yong;Choe, Se-Woon;Park, Choong-Shik;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.369-377
    • /
    • 2008
  • Though the Hough transform(HT) is a well-known method for detecting analytical shape represented by a number of free parameters, the basic property of the HT, the one-to-many mapping from an image spare to a Hough space, causes the innate problem, the sensitivity to noise. This basic problem also deteriorates the quality of detected lines and makes the detected line deviated from the real one or generates some bogus, multiple lines where only one real line exists. The size of Hough space also affects the quality of detected lines. In this paper, we analyzed the line distortions in the traditional Hough transform and showed that the distortions are relieved in the edge strength Hough transform(ESHT), which is a modified HT. However the usage of expanded edge and edge strength in ESHT can cause some new line distortions which do not exist in the HT. These new ones can be solved by a proper setting of decreasing and broadening parameter values and the optimal values can be determined only by some pre-determined values. We also illustrated several examples to show the distortion-decreasing property of ESHT.

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan;Park, Ji-Hoon;Kim, Man-Pil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.197-205
    • /
    • 2013
  • In this study, we developed a program of optimizing stand-level carbon stock using a stand-level yield model and the Simulated Annealing (SA) heuristic method to derive a optimized forest treatment solution. The SA is one of the heuristic algorithms that can provide a desirable management solution when dealing with various management purposes. The SA heuristic algorithm applied 'thermal equilibrium test', a thresholds approach to solve the phenomenon that does not find an optimum solution and stays at a local optimum value during the process. We conducted a sensitivity test for the temperature reduction rate, the major parameter of the thermal equilibrium test, to analyze its influence on the objective function value and the total iteration of the optimization process. Using the developed program, three scenarios were compared: a common treatment in forestry (baseline), the optimized solution of maximizing the amount of harvest(alternative 1), and the optimized solution of maximizing the amount of carbon stocks(alternative 2). As the results, we found that the alternative 1 showed provide acceptable solutions for the objectives. From the sensitivity test, we found that the objective function value and the total iteration of the process can be significantly influenced by the temperature reduction rate. The developed program will be practically used for optimizing stand-level carbon stock and developing optimized treatment solutions.

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.