• Title/Summary/Keyword: parameter function

Search Result 2,972, Processing Time 0.033 seconds

Analysis of the Wave Spectral Shape Parameters for the Definition of Swell Waves (너울성파랑 정의를 위한 파랑스펙트럼의 형상모수 특성 분석)

  • Ahn, Kyungmo;Chun, Hwusub;Jeong, Weon Mu;Park, Deungdae;Kang, Tae-Soon;Hong, Sung-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.394-404
    • /
    • 2013
  • In the present study, the characteristics of spectral peakedness parameter $Q_p$, bandwidth parameter ${\varepsilon}$, and spectral width parameter ${\nu}$ were analyzed as a first step to define the swell waves quantitatively. For the analysis, the joint probability density function of significant wave heights and peak periods were newly developed. The MCMC(Markov Chain Monte Carlo) simulations have been performed to generate the significant wave heights and peak periods from the developed probability density functions. Applying the simulated significant wave heights and peak periods to the theoretical wave spectrum models, the spectral shapes parameters were obtained and analyzed. Among the spectral shape parameters, only the spectral peakedness parameter $Q_p$, is shown to be independent with the significant wave height and peak wave period. It also best represents the peakedness of the spectral shape, and henceforth $Q_p$ should be used to define the swell waves with a wave period. For the field verification of the results, wave data obtained from Hupo port and Ulleungdo were analyzed and results showed the same trend with the MCMC simulation results.

Causal Analysis of Education Function Space Parameters of University Dormitory (대학기숙사 교육기능공간의 매개변수를 통한 인과분석)

  • Park, Hang-Ja;Park, Sung-Jin;No, Young-Ran
    • Journal of the Korean housing association
    • /
    • v.21 no.4
    • /
    • pp.23-31
    • /
    • 2010
  • This study aims to examine the educational function space of university dormitories at local universities with corridor centered structure in Honam area regions based on direct and indirect parameters on the whole satisfaction of users in residential environment factors and personal characteristics. First, according to relations among parameters, educational and cultural activities of four major activities within the dormitory had indirect influences on social activities, eating and sleeping activities had no direct influence on other activities. And social activity had direct influence on the general satisfaction as an important parameter and educational and cultural activities had indirect influence on the whole satisfaction through social activities. Detailed results show that, in the first educational activities directly affecting the lighting and air conditioning facilities (0.22), safety (0.326), Territoriality (0.327), the space density (-0.167), directions (-0.166) and yeohyang having personal characteristics and the safety of the second cultural activities (0.183), Territoriality (0.361), Aesthetics (-0.13) and the personal characteristics Sex (-0.179), the direct effect, third, and erosion has a direct impact on activity The flexibility of the space factor (-0.128) and Territoriality (0.38) and the personal characteristics grade (0.172), respectively. Fourth in social activities directly affecting the pathfinding (-0.104), and parameter, education (0.388) and cultural activities (0.445), and some of the factors affecting the indirect lighting and air conditioning facilities, safety, and Territoriality, the space density, directions, grade, they could influence through educational activities to be analyzed. That is, territoriality in educational function space is the important factor that users react very sensitively in educational, eating and sleeping activities and educational function space must secure area and division considering personal and public use as the space accommodating activity which is lacking in unit residential space. Accordingly, the safety of educational function space in university dormitory is considered as the fundamental safety matter on the fire prevention, hygiene and cleanness for users in the satisfaction of educational and cultural activities.

Estimation of Leak Frequency Function by Application of Non-linear Regression Analysis to Generic Data (비선형 회귀분석을 이용한 Generic 데이터 기반의 누출빈도함수 추정)

  • Yoon, Ik Keun;Dan, Seung Kyu;Jung, Ho Jin;Hong, Seong Kyeong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.15-21
    • /
    • 2020
  • Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA and safety technologies. The aim of this paper is to derive the leak frequency function that can be applied more flexibly in QRA based on OGP report with high reliability and global utilization. For the purpose, we first reviewed the data on the 16 equipments included in the OGP report and selected the predictors. And then we found good equations to fit the OGP data using non-linear regression analysis. The various expectation functions were applied to search for suitable parameter to serve as a meaningful reference in the future. The results of this analysis show that the best fitting parameter is found in the form of DNV function and connection function in natural logarithm. In conclusion, the average percentage error between the fitted and the original value is very small as 3 %, so the derived prediction function can be applicable in the quantitative frequency analysis. This study is to contribute to expand the applicability of QRA and advance safety engineering as providing the generic equations for practical leak frequency analysis.

A Study on the Fatigue Strength and Life Distribution of Carbon Steel Using the Database System (데이터베이스 시스템을 이용한 탄소강의 피로강도 및 수명분포)

  • Kim, Jung Kyu;Moon, Joon Ho;Kim, Do Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.37-45
    • /
    • 1998
  • The relational database system on fatigue strength was constructed, and the properties of fatigue life distribution were examined to analyze reliability and safety of metallic materials. Data manipulations were efficiently performed in relational fatigue strength database system using dependency diagram. Regardless of the distribution of fatigue strength, the proposed method, the Robust method and the complementary error function method using probability distribution, successfully estimated parameters of the 3-parameter Weibull distribution. The proposed criterion for estimating non-failure probability showed good results regardless of censoring time. The fatigue life distribution function described as a function of parameters of the Weibull distribution and applied stress ratio produced P-S-N characteristics reasonably.

  • PDF

A System Modeling and Controller Design Method Using Discrete Fourier Transform (이산 푸리에변환을 이용한 모델링과 제어기 설계 방법)

  • Shim, Kwan-Shik;Ahn, Hyun-Jin;Nam, Hae-Kon;Lim, Yeong-Chul;Kim, Eui-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.34-43
    • /
    • 2012
  • This paper describes system modeling and controller design method in the measured signal by discrete Fourier transform. Transfer function of the second order system is estimated by the dominant parameter which is computed in the magnitude and the phase of Fourier spectrum of the measured signal. In addition, the controller was designed by the estimated transfer function, and the results were compared. The proposed estimation method of transfer function contains only a very simple mathematical process. Therefore, it is effective to design the controller in the measured signal when the output of the system contains the characteristics of complex exponential functions case. The proposed method was applied on Op-Amp system to verify the efficiency and the reliability. The results show that the proposed algorithms are highly applicable to the system modeling and controller design in the measured data.

Modal parameter identification with compressed samples by sparse decomposition using the free vibration function as dictionary

  • Kang, Jie;Duan, Zhongdong
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • Compressive sensing (CS) is a newly developed data acquisition and processing technique that takes advantage of the sparse structure in signals. Normally signals in their primitive space or format are reconstructed from their compressed measurements for further treatments, such as modal analysis for vibration data. This approach causes problems such as leakage, loss of fidelity, etc., and the computation of reconstruction itself is costly as well. Therefore, it is appealing to directly work on the compressed data without prior reconstruction of the original data. In this paper, a direct approach for modal analysis of damped systems is proposed by decomposing the compressed measurements with an appropriate dictionary. The damped free vibration function is adopted to form atoms in the dictionary for the following sparse decomposition. Compared with the normally used Fourier bases, the damped free vibration function spans a space with both the frequency and damping as the control variables. In order to efficiently search the enormous two-dimension dictionary with frequency and damping as variables, a two-step strategy is implemented combined with the Orthogonal Matching Pursuit (OMP) to determine the optimal atom in the dictionary, which greatly reduces the computation of the sparse decomposition. The performance of the proposed method is demonstrated by a numerical and an experimental example, and advantages of the method are revealed by comparison with another such kind method using POD technique.

Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm (유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

Impact Angle Control Guidance Synthesis for Evasive Maneuver against Intercept Missile

  • Yogaswara, Y.H.;Hong, Seong-Min;Tahk, Min-Jea;Shin, Hyo-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.719-728
    • /
    • 2017
  • This paper proposes a synthesis of new guidance law to generate an evasive maneuver against enemy's missile interception while considering its impact angle, acceleration, and field-of-view constraints. The first component of the synthesis is a new function of repulsive Artificial Potential Field to generate the evasive maneuver as a real-time dynamic obstacle avoidance. The terminal impact angle and terminal acceleration constraints compliance are based on Time-to-Go Polynomial Guidance as the second component. The last component is the Logarithmic Barrier Function to satisfy the field-of-view limitation constraint by compensating the excessive total acceleration command. These three components are synthesized into a new guidance law, which involves three design parameter gains. Parameter study and numerical simulations are delivered to demonstrate the performance of the proposed repulsive function and guidance law. Finally, the guidance law simulations effectively achieve the zero terminal miss distance, while satisfying an evasive maneuver against intercept missile, considering impact angle, acceleration, and field-of-view limitation constraints simultaneously.

Effect of Spacer Grids on CHF at PWR Operating Conditions

  • Ahn, Seung-Hoon;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.283-297
    • /
    • 2001
  • The CHF in PWR rod bundles is usually predicted by the local flow correlation approach based on subchannel analysis while difficulty exists due to the existence of spacer grids especially with mixing vanes. In order to evaluate the effect of spacer grids on CHF, the experimental rod bundle data with various types of spacer grids were analyzed using the subchannel code, COBRA-IV-i. For the Plain grid data, a CHF correlation was described as a function of local flow conditions and heated length, and then the residuals of the CHF in mixing vaned grids predicted by the correlation were examined in various kinds of grids. In order to compensate for the residual, three parameters, distances between grids and from the last grids to the CHF site, and equivalent hydraulic diameter were introduced into a grid parameter function representing the remaining effect of spacer grids predicted most of the CHF data points in plaing grids within $\pm$20 percent error band. Good agreement with the CHF data was also shown when the grid parameter function for mixing vaned grids of a specific design was used to compensate for the residuals of the CHF data predicted by the correlation.

  • PDF

Adaptive Retinex Algorithm using Skewness for Contrast Enhancement (대조비 개선을 위한 비대칭도 특성을 이용한 적응적인 레티넥스 방식)

  • Oh, Jong Geun;Hong, Min-cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.77-83
    • /
    • 2016
  • This paper presents an adaptive retinex algorithm using skewness for contrast enhancement of color images. In order to estimate the degree of low contrast of an image, skewness of luminance of an observed image is used to define a parameter, and a non-linear function is proposed to compensate the reflectance using the parameter and estimated reflectance. In addition, determination of gain and offset of the non-linear function is addressed using statistics of the estimated reflectance. The relation between an observed luminance and the compensated luminance is used to compensate color components with the reduction of computational cost. The experimental results show that the proposed algorithm has the capability to effectively improve the contrast without color distortion.