• Title/Summary/Keyword: parameter function

Search Result 2,972, Processing Time 0.032 seconds

Hybrid Fuzzy Controller Based on Control Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 제어파라미터 추정모드기반 HFC)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2545-2547
    • /
    • 2000
  • In this paper, a hybrid fuzzy controller using genetic algorithm based on parameter estimation mode to obtain optimal control parameter is presented. First, The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PID's output in steady state by a fuzzy variable, namely, membership function of weighting coefficient. Second, genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller utilizing the conventional methods for finding PID parameters and estimation mode of scaling factor. The algorithms estimates automatically the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules according to the rate of change and limitation condition of control input. Computer simulations are conducted to evaluate the performance of proposed hybrid fuzzy controller. ITAE, overshoot and rising time are used as a performance index of controller.

  • PDF

A Novel Algorithm of Underground Cable Fault Location based on the analysis of Distributed Parameter Circuit (분포정수회로 해석 방법을 이용한 지중선로 고장점 추정 알고리즘)

  • Yang Xia;Lee Duck Su;Choi Myeon Song
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.412-414
    • /
    • 2004
  • In this paper, a novel algorithm of underground cable fault location based on the analysis of distributed parameter circuit is proposed. The proposed method makes voltage and current equations about core and sheath, and then establishes a function of the fault distance according to the analysis of fault conditions. Finally gets the solution of this function through Newton-Raphson iteration method. The effectiveness of proposed algorithm has been verified by Matlab program, and the cable parameters such as impedance and admittance are from EMTP simulation.

  • PDF

Development of a Process Control Language Using Function Block Configuration (기능블록 구성에 의한 공정제어 언어의 개발)

  • Byung Kook Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.24-34
    • /
    • 1992
  • A process control language is developed using function block configuration, to simplify software development for large scale process control systems, and to implement advanced control algorithms with ease. A function block parser and controller is implemented to be suitable for multi-loop control systems having hierachical structure. On-line change of controller parameter is possible, and inclusion of user defined function block is also possible. By adding plant model block, control performance can be checked in advance. Function blocks of the Smith Predicotor, auto-tuners are implemented to demonstrate usefulness of function block configuration.

  • PDF

Repair Cost Estimation Model of the Building Exterior and Outdoor Facilities in Apartment Housing (공동주택 건물 외부공간 및 옥외시설의 공종별 수선비용 산정모델)

  • Lee, Kang-Hee;Chae, Chang-U
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.129-135
    • /
    • 2016
  • Purpose: Building figuration is imperative to perceive the its value, environmental clean status and form. Therefore, maintenance activities of the building exterior are required to keep the housing condition and value. Each household should pay the repair cost which is brought out in the future. For this repair cost, the estimation model would needed to forecast and provide the required cost. This study aimed at providing the estimation model of the repair cost, using the repair survey data between the 2011 and 2014 in Seoul. Method: For these, it took various estimation function of repair cost such as 1st function, inverse function and so on. These above functions would be applied into the building exterior and outdoor facilities which figure the building shape and characteristics. Result: Results of this study are shown ; First, among 11 estimation models, the power function has a better statistics and goodness-of-fit than any other models. Second, the estimation model with a variable of household has a pattern in upward to the right. On the contrary, the model with management area is little downward to the right. Both of them are depended on the estimated parameter of the power function and the parameter smaller than 1.

Electron Energy Distribution function in CH4 by MCS-BEq (MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Review of Classification Models for Reliability Distributions from the Perspective of Practical Implementation (실무적 적용 관점에서 신뢰성 분포의 유형화 모형의 고찰)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.195-202
    • /
    • 2011
  • The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.

6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific (수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구)

  • Chung W.J.;Kim H.G.;Kim K.J.;Kim K.T.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF

An Application of the Sensitivity Method for Parameter Estimation (파라미터 추정을 위한 민감도 기법의 응용에 관한 연구)

  • 백문열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.112-118
    • /
    • 2000
  • This paper deals with the application of sensitivity method to the parameter estimation for the dynamic analysis of gener-al mechanical system. In this procedure we take the derivatives of the given system with respect to a certain parameter and use this information to implement the steepest descent method. This paper will give two examples of this technique applied to simple vehicle models. This paper will give two examples of this technique applied to simple vehicle models. Simulation results show excellent convergence and accuracy of parameter estimates.

  • PDF

Optimal Path Planning for UAVs to Reduce Radar Cross Section

  • Kim, Boo-Sung;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.54-65
    • /
    • 2007
  • Parameter optimization technique is applied to planning UAVs(Unmanned Aerial Vehicles) path under artificial enemy radar threats. The ground enemy radar threats are characterized in terms of RCS(Radar Cross Section) parameter which is a measure of exposure to the radar threats. Mathematical model of the RCS parameter is constructed by a simple mathematical function in the three-dimensional space. The RCS model is directly linked to the UAVs attitude angles in generating a desired trajectory by reducing the RCS parameter. The RCS parameter is explicitly included in a performance index for optimization. The resultant UAVs trajectory satisfies geometrical boundary conditions while minimizing a weighted combination of the flight time and the measure of ground radar threat expressed in RCS.