• Title/Summary/Keyword: parameter estimation methods

Search Result 651, Processing Time 0.029 seconds

Reliability Evaluation of Parameter Estimation Methods of Probability Density Function for Estimating Probability Rainfalls (확률강우량 추정을 위한 확률분포함수의 매개변수 추정법에 대한 신뢰성 평가)

  • Han, Jeong-Woo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.143-151
    • /
    • 2009
  • Extreme hydrologic events cause serious disaster, such as flood and drought. Many researchers have an effort to estimate design rainfalls or discharges. This study evaluated parameter estimation methods to estimate probability rainfalls with low uncertainty which will be used in design rainfalls. This study collected rainfall data from Incheon, Gangnueng, Gwangju, Busan, and Chupungryong gage station, and generated synthetic rainfall data using ARMA model. This study employed the maximum likelihood method and the Bayesian inference method for estimating parameters of the Gumbel and GEV distribution. Using a bootstrap resampling method, this study estimated the confidence intervals of estimated probability rainfalls. Based on the comparison of the confidence intervals, this study recommended a proper parameter estimation method for estimating probability rainfalls which have a low uncertainty.

Method of Recurrence Interval Estimation for Fault Activity from Age Dating Data (연대측정자료를 이용한 단층활동주기 산정 방법)

  • 최원학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.74-80
    • /
    • 2001
  • The estimation of recurrence interval for fault activity and earthquake is an important input parameter for seismic hazard assessment. In this study, the methods of recurrences interval estimation were reviewed and tentative calculation was performed for age dating data which have uncertainty. Age dating data come from previous studies of Ulsan fault system which is a well developed lineament in the southeastern part of korean Peninsula. Age dating for fault gouges, parent rocks, Quaternary sediments and veins were carried out by several researchers through various methods. Recurrence interval for fault activity was estimated on the basis of the age dating data of minor fault gouge and sediments during past 3Ma. The estimated recurrence interval was about 430-500 ka. Exact estimation of recurrence interval for fault activity need to compile more geological data and fault characteristics such as fault length, amount of displacement, slip rate and accurate fault movement age. In the future, the methods and results of fault recurrence interval estimation should be considered for establishing the criteria for domestic active fault definition.

  • PDF

Experimental Data based-Parameter Estimation and Control for Container Crane (실험적 데이터 기반의 컨테이너 크레인 파라미터 추정 및 제어)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.379-385
    • /
    • 2008
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.

Parameter Estimation and Control for Apparatus of Container Crane;An Experimental Approach (모형 컨테이너 크레인의 파라미터 추정 및 제어;실험적 접근)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.304-306
    • /
    • 2007
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.

  • PDF

Comparison of Reliability Estimation Methods for Ammunition Systems with Quantal-response Data (가부반응 데이터 특성을 가지는 탄약 체계의 신뢰도 추정방법 비교)

  • Ryu, Jang-Hee;Back, Seung-Jun;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.982-989
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems such as ammunitions. Quantal-response data, following a binomial distribution at each sampling time, characterizes lifetimes of one-shot systems. Various quantal-response data of different sample sizes are simulated using lifetime data randomly sampled from assumed weibull distributions with different shape parameters but the identical scale parameter in this paper. Then, reliability estimation methods in open literature are applied to the simulated quantal-response data to estimate true reliability over time. Rankings in estimation accuracy for different sample sizes are determined using t-test of SSE. Furthermore, MSE at each time, including both bias and variance of estimated reliability metrics for each method are analyzed to investigate how much both bias and variance contribute the SSE. From the MSE analysis, MSE provides reliability estimation trend for each method. Parametric estimation method provides more accurate reliability estimation results than the other methods for most of sample sizes.

Development of an Expert System to Improve the Methods of Parameter Estimation (매개변수 추정방법의 개선을 위한 전문가 시스템의 개발)

  • Lee, Beom-Hui;Lee, Gil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.641-655
    • /
    • 1998
  • The methods of development and application of an expert system are suggested to solve more efficiently the problems of water resources and quality induced by the rapid urbanization. Major parameters of the water quantity and quality of urban areas are selected their characteristics are presented by the sensitivity analysis. The rules to decide the parameters effectively are proposed based on these characteristics. the ESPE(Expert System for Parameter Estimation), an expert system based on the 'facts' and 'rules', is developed using the CLIPS 6.0 and applied to the basin of the An-Yang stream. The results of estimating t도 parameters of water quantity show a high applicability, but those of water quality imply the necessity of improving the present methods due to both the complexity of estimation processes and the lack of decision rules.

  • PDF

Analysis of Structural Reliability under Model and Statistical Uncertainties: a Bayesian Approach

  • Kiureghian, Armen-Der
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • A framework for reliability analysis of structural components and systems under conditions of statistical and model uncertainty is presented. The Bayesian parameter estimation method is used to derive the posterior distribution of model parameters reflecting epistemic uncertainties. Point, predictive and bound estimates of reliability accounting for parameter uncertainties are derived. The bounds estimates explicitly reflect the effect of epistemic uncertainties on the reliability measure. These developments are enhance-ments of second-moment uncertainty analysis methods developed by A. H-S. Ang and others three decades ago.

  • PDF

OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.755-766
    • /
    • 2014
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the optimal solution which minimizes the maximum error. Some numerical results are reported.

Estimation of Camera Calibration Parameters using Line Corresponding Method (선 대응 기법을 이용한 카메라 교정파라미터 추정)

  • 최성구;고현민;노도환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.569-574
    • /
    • 2003
  • Computer vision system is broadly adapted like as autonomous vehicle system, product line inspection, etc., because it has merits which can deal with environment flexibly. However, for applying it for that industry, it has to clear the problem that recognize position parameter of itself. So that computer vision system stands in need of camera calibration to solve that. Camera calibration consists of the intrinsic parameter which describe electrical and optical characteristics and the extrinsic parameter which express the pose and the position of camera. And these parameters have to be reorganized as the environment changes. In traditional methods, however, camera calibration was achieved at off-line condition so that estimation of parameters is in need again. In this paper, we propose a method to the calibration of camera using line correspondence in image sequence varied environment. This method complements the corresponding errors of the point corresponding method statistically by the extraction of line. The line corresponding method is strong by varying environment. Experimental results show that the error of parameter estimated is within 1% and those is effective.

Review on State of Charge Estimation Methods for Li-Ion Batteries

  • Zhang, Xiaoqiang;Zhang, Weiping;Li, Hongyu;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.136-140
    • /
    • 2017
  • The state of charge (SOC) is an important parameter in a battery-management system (BMS), and is very significant for accurately estimating the SOC of a battery. Li-ion batteries boast of excellent performance, and can only remain at their best working state by means of accurate SOC estimation that gives full play to their performances and raises their economic benefits. This paper summarizes some measures taken in SOC estimation, including the discharge experiment method, the ampere-hour integral method, the open circuit voltage method, the Kalman filter method, the neural network method, and electrochemical impedance spectroscopy (EIS. The principles of the various SOC estimation methods are introduced, and their advantages and disadvantages, as well as the working conditions adopted during these methods, are discussed and analyzed.