• Title/Summary/Keyword: parallelism control

Search Result 67, Processing Time 0.041 seconds

PARALLEL OPTIMAL CONTROL WITH MULTIPLE SHOOTING, CONSTRAINTS AGGREGATION AND ADJOINT METHODS

  • Jeon, Moon-Gu
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.215-229
    • /
    • 2005
  • In this paper, constraint aggregation is combined with the adjoint and multiple shooting strategies for optimal control of differential algebraic equations (DAE) systems. The approach retains the inherent parallelism of the conventional multiple shooting method, while also being much more efficient for large scale problems. Constraint aggregation is employed to reduce the number of nonlinear continuity constraints in each multiple shooting interval, and its derivatives are computed by the adjoint DAE solver DASPKADJOINT together with ADIFOR and TAMC, the automatic differentiation software for forward and reverse mode, respectively. Numerical experiments demonstrate the effectiveness of the approach.

Optimized Operational Environment for Parallel TTLS Solver (병렬계산용 TTLS 알고리즘의 최적운용환경)

  • Kim, H.J.;Kim, Y.J.;Lee, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.666-668
    • /
    • 1988
  • A new tridiagonal Toeplitz linear system (TTLS) solver is proposed. The solver decomposes a strictly diagonally dominant TTLS equation into a number of subsystems using a limit convergent of an analytic solution of a continued fraction. Subsystem equations can be solved employing a modified Gaussian elimination method. The solver fully exploits parallelism. Optimized operational environment for the algorithm is discussed.

  • PDF

Static forwardin: an approach to reduce data hazards in VLIW processor (정적 포워딩에 의한 VLIW 프로세서의 데이터 hazard 처리)

  • 박형준;김이섭
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.1-9
    • /
    • 1998
  • To achieve high performance in VLIW processors, they must exploit the parallelism on application programs. Data dependency makes it difficult to find the instruction-level parallelism. Among the three kinds of data dependency, true dependency causes RAW(Read After Wirte) hazards that occur most frequently in VILW processors. Forwarding is a widely used technique to reduce the performance degradation caused by RAW hazards. However, forwarding requires too much area of the chip when it is applied to VLIW processors. In this paper, static forwarding is proposed to reduce the hardware cost of forwarding circuits. It needs an extended compiler to detect RAW hazards and control the proposed forwarding scheme via instruction. And it uses the modified register file to shrink the area of forwarding path. VLIW Processor Model is also designed to verify static forwarding. This paper describes the operation of static forwarding and the comparison with the conventional forwarding.

  • PDF

Performance improvement of single chip multiprocessor using concurrent branch execution (분기 동시 수행을 이용한 단일 칩 멀티프로세서의 성능 향상 기법)

  • Lee, Seung-Ryul;Jung, Jin-Ha;Choi, Jae-Hyeok;Choi, Sang-Bang
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.723-724
    • /
    • 2006
  • Exploiting the instruction level parallelism encountered with the limit. Single chip multiprocessor was introduced to overcome the limit of traditional processor using the instruction level parallelism. Also, a branch miss prediction is one of the causes that reduce the processor performance. In order to overcome the problems, in this paper, we make single chip multiprocessor having the idle core execute the two control flow of conditional branch. This scheme is a kind of multi-path execution technique based on single chip multiprocessor architecture.

  • PDF

A Study on software performance acceleration for improving real time constraint of a VLIW type Drone FCC (VLIW (Very Long Instruction Word) 형식 드론 FCC(Flight Control Computer)의 실시간성 개선을 위한 소프트웨어 성능 가속화 연구)

  • Cho, Doo-San
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Most conventional processors execute program instructions in a sequential manner. On the other hand, VLIW processor can execute multiple instructions at the same time. It exploits instruction level parallelism to improve system performance. To that end, program code should be rearranged to VLIW instruction format by a compiler. The compiler determine an optimal execution order of instructions of a program code. This instruction ordering is also called instruction scheduling. The scheduling is an algorithm that decides the execution order for instruction codes in loop parts of a program so that the instruction level parallelism can be maximized. In this research, we apply an existing scheduling algorithm to a VLIW FCC and describe analysis results to further improve its performance. And, we present a solution to solve some limitation of the existing scheduling technique. By using our solution, FCC's performance can be improved upto 32% compared to the existing scheduling only setting.

Holographic femtosecond laser processing

  • Hayasaki, Yoshio
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.61-63
    • /
    • 2008
  • Parallel femtosecond laser processing using a computer-generated hologram (CGH) displayed on a liquid crystal spatial light modulator (LCSLM) is demonstrated. The use of the LCSLM enables to perform an arbitrary and variable patterning. This holographic femtosecond laser processing has advantages of high throughput and high light-use efficiency. A critical issue is to precisely control the intensities of the diffraction peaks of the CGH. We demonstrate some methods for the control of the diffraction peaks. We also demonstrate the laser processing with two-dimensional and three-dimensional parallelism.

  • PDF

Branch Misprediction Recovery Mechanism That Exploits Control Independence on Program (프로그램 상의 제어 독립성을 이용한 분기 예상 실패 복구 메커니즘)

  • Yoon, Sung-Lyong;Lee, Won-Mo;Cho, Yeong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.7
    • /
    • pp.401-410
    • /
    • 2002
  • Control independence has been put forward as a new significant source of instruction-level parallelism for superscalar processors. In branch prediction mechanisms, all instructions after a mispredicted branch have to be squashed and then instructions of a correct path have to be re-fetched and re-executed. This paper presents a new branch misprediction recovery mechanism to reduce the number of instructions squashed on a misprediction. Detection of control independent instructions is accomplished with the help of the static method using a profiling and the dynamic method using a control flow of program sequences. We show that the suggested branch misprediction recovery mechanism improves the performance by 2~7% on a 4-issue processor, by 4~15% on an 8-issue processor and by 8~28% on a 16-issue processor.

A Branch Misprediction Recovery Mechanism by Control Independence (제어 독립성과 분기예측 실패 복구 메커니즘)

  • Ko, Kwang-Hyun;Cho, Young-Il
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.3-22
    • /
    • 2012
  • Control independence has been put forward as a significant new source of instruction-level parallelism for superscalar processors. In branch prediction mechanisms, all instructions after a mispredicted branch have to be squashed and then instructions of a correct path have to be re-fetched and re-executed. This paper presents a new branch misprediction recovery mechanism to reduce the number of instructions squashed on a misprediction. Detection of control independent instructions is accomplished with the help of the static method using a profiling and the dynamic method using a control flow of program sequences. We show that the suggested branch misprediction recovery mechanism improves the performance by 2~7% on a 4-issue processor, by 4~15% on an 8-issue processor and by 8~28% on a 16-issue processor.

New method for LQG control of singularly perturbed discrete stochastic systems

  • Lim, Myo-Taeg;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.432-435
    • /
    • 1995
  • In this paper a new approach to obtain the solution of the linear-quadratic Gaussian control problem for singularly perturbed discrete-time stochastic systems is proposed. The alogorithm proposed is based on exploring the previous results that the exact solution of the global discrete algebraic Riccati equations is found in terms of the reduced-order pure-slow and pure-fast nonsymmetric continuous-time algebraic Riccati equations and, in addition, the optimal global Kalman filter is decomposed into pure-slow and pure-fast local optimal filters both driven by the system measurements and the system optimal control input. It is shown that the optimal linear-quadratic Gaussian control problem for singularly perturbed linear discrete systems takes the complete decomposition and parallelism between pure-slow and pure-fast filters and controllers.

  • PDF

An inverse dynamic torque control of a six-jointed robot arm using neural networks (신경회로를 이용한 6축 로보트의 역동력학적 토크 제어)

  • 조문증;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.1-6
    • /
    • 1990
  • Neural network is a computational model of ft biological nervous system developed ID exploit its intelligence and parallelism. Applying neural networks so robots creates many advantages over conventional control methods such as learning, real-time control, and continuous performance improvement through training and adaptation. In this paper, dynamic control of a six-link robot will be presented using neural networks. The neural network model used in this paper is the backpropagation network. Simulated control of the PUMA 560 am shows that it can move a high speed as well as adapt to unforseen load changes and sensor noise. The results are compared with the conventional PD control scheme.

  • PDF