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Optimized Operational Environment fof Parallel TTLS Solver

H.J.Kim, Y.J. Kim and J. G. Lee
Dept. Control & Instrumentation Engineering, SNU

Abstract. A new tridiagonal Toeplitz linear system (TTLS)
solver is proposed. The solver decomposes a strictly diagonally
dominant TTLS equation into a number of subsystems using a
limit convergent of an analytic solution of a continued fraction.
Subsystem equations can be solved employing a modified
Gaussian  elimination method. The solver fully exploits
parallelism. Optimized operational environment for the
algorithm is discussed.

1. Introduction

An nXn matrix A=(a) is Toeplitz if ay=d, for all i and j
such that i—j=k, where d, is an arbitrary constant. Furthur, if
the elements of the matrix ay is zero for all i~ j|2, the matrix
is called tridagonal. If

"
lagl > Zlay| foreach i=1,2,..,n,

J=1
¥

then A is called a strictly diagonally dominant matrix.

The tridiagonal Toeplitz linear system (TTLS) plays a very
important role in engineering problems. Specificaily, they occur
repeatedly in digital signal processing (7] and finite-difference
approximation to various differential equations [1}, {2}, [5]}.

To speed up the computation time in solving a large-scale
TILS, recursive doubling [3], {8] and cyclic reduction [4]
algorithms have been introduced. These algorithms are, by
nature, all recursive during the decomposition phases, which
are time-consuming procedures. Moreover, most of processors
are left idle while a TTLS is decomposed. As the result, it is
difficult to fully exploit parallelism with these algorithms,

A new parallel algorithm based on the modified Gaussian
elimination method [6] has been proposed to solve a TILS
efficiently. The parallel algorithm is based on the modified
Gaussian elimination method, a variant of the Gaussian
elimination technique. This algorithm requires a continued
fraction and its analytic solution during the decomposition
phase to minimize the decomposition overhead. To minimize
the interprocessor communication and maximize the degree of
parallelism, the Gaussian elimination method is slightly
modified using the limit convergent of the analytic solution of
the continued fraction [6].

The efficiency of the algorithm is considered in this paper.
Optimal environment for the minimum computation time for
the proposed algorithm is discussed since the linear array is
used. Compromise between computation and communication
time should be required.

In Section 2, parallel algorithm for TTLS is developed. In
Section 3, efficiency of the algorithm is shown based on the
various indexes. Optimized operational environment, the
measures to speed up the computation time, is also discussed.
Section 3 summarizes the results.

2. Parallel Algorithm for TTLS

During the Gaussian forward elimination for a TILS, a
periodic continued fraction

A=A,

a
M=A-—, k=2,3,..,n
xl-'l

appears. An analytic solution of the continued fraction [6] has
been given. However, the analytic solution is time-consuming
and prone to cause a serious numerical problem. Thus, when &
is sufficiently large, we set A, =y, where

A+VAI—da
LA
A TTLS equation may be written in a form
rh 8 1wy T [ ow T
a A B uy wy

a X Bliue Wy
L -1 A- DEEEN
or

Ay = w.

The Gaussian elimination method is a sequential algorithm
by nature. Thus, it should be modified for parallel computation.
Hereafter, the modified Gaussian elimination method will be
presented. :

The Gaussian forward elimination is applicd to liminate a's
inA as follows:

kl = k,
o
A= A-— -—E—, k=23, ..,n
Ay
and
Wy = wy,

a
e ’;_“’k—-lv k=2,3,...,n
k-1
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Analytic solution of a continued fraction can be naturally
u3volved in the parallel algorithm development. If A is strictly
diagonally dominant, A, “onverges to y for some finite integer
k<n when »n is sufficiently large.

The Gaussian backward substitution procedure is now
applied to obtain ,’s as follows:

1 -
U, = —
(] n
A,

1
= —0W~Buyy), k=n-1,n-2, .., 1.
A

However, these procedures are all purely recursive.
Although a recursive algorithm is desirable for sequential
processing environment, it is the major obstacle to paralielism.
To solve the TTLS with ¢ processors simultaneously, it should
be decomposed into g subsystem equations such that

A =%, i=1,2..,q

or, for ith processor,

Ma o8 i1y Wia1
o x B iz Wiaz
e A Blltpy W)y
a A .
L 1L ul+m ] L wj +m |

with j=m(i~1), where A, is an mXm matrix. Now if A is
strictly diagonally dominant, ;4 can be obtained from the
analytic solution of the continued fraction immediately, where
a = afi, However, since the analytic solution is time-
consuming and prone to cuase numerical problem, Mgy is
replaced by vy of the limit convergent. Then,

k_I+1 =Y
af

A=A , k=23,..,m
Aj4i-1

During the Gaussian forward elimination, w,,, cannot be
obtained without knowing w,. Thus, we define a new recursive
equation pair

Wiy = Wip,

Wyar = Wy = — Wy, k=2,3, ., m.

Ajar—t
and
m =1,
a
Mgy = = Myskets k=1,2,...,m
Mgt

If W, is known, the Gaussian forward elimination can be as
Wiap = Wyt mpl, k=12,..,m
Similarly, we define a new recursive equation pair
1

fjpy = ——
Jm y
Mim

Bjog = (WjﬂnBﬁjﬂﬂ), k=m-1,m~2,..,1.
j+k
and
Bomey =1,
Mgy = = Wag+1s k=m,m-1,..,1
Arri+1

If u,4,,41 i8 known, the Gaussian backward substitution can be
performed as

Wsmeg = Gpam-t T Brpe1yemsy k=0,1,..,m—-1

Apparently, fig, ¥, f,.4q and i, 1 are all zeroes. The modified
Gaussian elimination algorithm requires additional procedures
to compute m’s and ny’s. Fig. 1 illustrates how to operate the
proposed algorithm.

3. Optimal Environment for Parallel TTLS Solver

Since a TTLS equation is very simple, its computation time
is directly proportional to n, dimension of a TTLS, for the
sequential computer. During the Gaussian forward elimination,
3(n—1) multiplications/divisions and 2(n—-1)
additions/subtractions are required. During the Gaussian
backward substitution, 27— 1 multiplications/divisions and n—1
additions/subtractions are required. Thus, the straightforward
Gaussian elimination method requires 5n—-3
multiplicationv/divisions and 3(n —1) additions/subtractions.

Consider a symmetric and strictly diagopally dominant
TTLS. Assume that there are g processors such that g = 2F,
that is to say, at the pth phase, an nXn TTLS is decomposed
into g subsystems of dimension m. Then, at least p
decomposition phases are required to use ¢ processors fully. At
the pth decomposition phase, cyclic reduction algorithm [4]
requires m+3 memory elements. Recursive doubling algorithm
{3] requires 3m+2 memory elements. All of them require m+3
memory elements during the linear equation solution phase.
The required memory elements are used to store the minimum
information, for example, a, 8, A, and w,’s. In our algorithm,
m+3 memory elements are required during the linear equation
solution phase only.

Consider that 2’m=n. Then, computation time complexity
of cyclic reduction and recursive doubling algorithms amounts
to O(n) under the assumption that communication time
complexity is negligible. That of our algorithm is O(m). Since
that of the sequential algorithm is O(n), efficiency of our
algorithm is evident. Total communication time complexities of
recussive doubling and our algorithms are O(log,g) and O(g),
respectively, although they exchange 2 data between the
neighboring processors. Total memory complexity of our
algorithm is O(n). However, others are all O(pn) for minimum
computation time. Table 1 summarizes the performances of the
above-mentioned algorithms.

To minimize the computation time of the algorithm,
compromise between computation and communication time
should be required. Since the computation and communication
time complexities are O(m) and O(n/m), assume that m and
n/m unit operations are to be performed, respectively. Let unit
communication time be p times slower than unit computation
time. Then, it is easy to show that the maximum order of the
decomposed subsystem is determined as

m = Vpn

to minimize the total computation time. In this case, processor
number g is determined as

q = Va/mp.
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4. Conclusion

To effectively solve a large-scale TTLS, a new parallel
algorithm [6] has been proposed. The algorithm is based on the
modified Gaussian elimination method, a variant of the
Gaussian elimination technique. When the algorithm is
employed, a strictly diagonally dominant TTLS can be
dgcomposed into ¢ subsystems at once. Only ¢ TTLSs of
dimension m are to be solved. Its efficiency has been
demonstrated based on the quantitative indexes such as total
computation time, communication time and memory
complexities, O(m), O(nm) and O(n), respectively. Maximum
order of the subsystem m can be determined as a function of
and p, under the assumption that unit communication time is p
times slower than unit computation time. Thus, to minimize
the total computation time, communication time between the
processors should be minimized.
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Figure 1. Operational scheme for the parallel TTLS solver.

Table 1. Performance comparison of the parallel TTLS solvers.

Sequential

Cyclic Reduction

Recursive Doubling Ours

Total
Computation Ofn)
Counts

O(n) Oo(n) O(nlq)

| Totat
Communication -
Counts

O(nj O(logy) 0(q)

Total '
Memory Ofn)
Counts

O(pn} Ofpnj Ofn)
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