• Title/Summary/Keyword: parallel-fed

Search Result 115, Processing Time 0.023 seconds

Developing a New BNR (Parallel BNR) Process by Computer Simulation (컴퓨터 시뮬레이션을 이용한 신 생물학적 고도처리 (병렬 고도처리) 공법 개발)

  • Lee, Byonghi;Lee, Yong-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Since Korean government imposed a stricter regulation on effluent T-N and T-P concentrations from wastewater treatment plant, a new process has to be developed to meet these rules and this process should remove T-N and T-P, economically, from weak wastewater that is typical for Korea's combined sewer system sewage. In this study, a computer simulator, BioWin from EnviroSim, Inc. was used. Three processes - A2/O, Modified Johannesburg, UCT- had been simulated under same operational conditions and a new process - Parallel BNR Process - had been developed based on these simulation results. The Parallel BNR process consists of two rows of reactors: One row has anaerobic and aerobic reactors in series, and the other row has RAS anoxic1 and RAS anoxic2 reactors in series. In order to ensure anaerobic state in anaerobic tank, a part of influent is fed to RAS anoxic1 tank in second row. This process had been simulated under same conditions of other three processes and the simulation results were compared. The results showed that three existing processes could not perform biological phosphorus removal when the average influent was fed at any operation temperatures. However, the Parallel BNR process was found that biological phosphorus removal could be performed when both design and average influent were fed at any operation temperatures. This process showed the T-N concentration in effluent had a maximum value of 15mg/L when design influent was fed at $13^{\circ}C$ and a minimum value of 14mg/L when average influent was fed at $20^{\circ}C$. Also, T-P concentrations had a maximum value of 1.3mg/L when average influent was fed at $20^{\circ}C$ and a minimum value of 1.1mg/L when design influent was fed at $13^{\circ}C$. Based on these results, we found that this process can remove nitrogen and phosphorus biologically under any operational conditions.

Parallel-fed Multiple Loop Antenna for 13.56MHz RFID Reader

  • Yang Woon Geun;Park Yong Ju;Kim Hyuck Jin;Cho Jung Min;Kim Jung Ho
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.334-338
    • /
    • 2004
  • In this paper, we suggest a new antenna structure for RFID(Radio Frequency IDentification) reader. Conventional RFID reader uses a loop antenna. The central area of a loop antenna shows a low magnetic field strength especially for the case of a large loop antenna diameter. We propose a parallel-fed multiple loop antenna. Simulation results and measured results show that we can adjust field distribution with the number of turns and diameter of an inner loop antenna to obtain a longer reading distance. Simulation results for the specific case of a proposed antenna structure show that at the center point of a proposed parallel-fed multiple loop antenna, the typical card area averaged magnetic field strength is 2.53A/m, which is higher than the case of a conventional type single loop antenna of 0.44A/m and the case of a series-fed multiple loop antenna of 0.96A/m when we drive with same source signal. We realized the antenna for the case of 13.56MHz RFID reader and the performance of reading distance was much more improved than the case of a conventional antenna.

  • PDF

An Improved Topology for the Current Fed Parallel Resonant Half Bridge Circuits Used in Fluorescent Lamp Electronic Ballasts

  • Wang, Qingsong;Cheng, Ming;Zhang, Bing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.567-575
    • /
    • 2015
  • An improvement in the current fed parallel resonant half bridge (CFPRHB) circuits used in fluorescent lamp electronic ballasts is provided in this paper. The CFPRHB belongs to the self-oscillating family which includes the current fed push-pull and series resonant inverters, most of which are used in instant-start applications. However, many failure modes are related to the bypass capacitor according to an analysis of failed samples. In this paper, the operating functions of the existing topology in the steady state are analyzed and the main root cause of failure modes has been found. Comparisons between the two topologies are conducted in terms of the voltage stress of the bypass capacitor as well as the thermal and performance of the ballasts to verify the advantages of the proposed topology. It is found that the improved topology is capable of enhancing the reliability and reducing the cost of products without having a negative influence on the system performance.

A Study on the Magnetic Field Improvement for 13.56MHz RFID Reader Antenna (13.56MHz RFID 리더 안테나의 자계 필드 개선에 관한 연구)

  • Kim, Hyuck-Jin;Yang, Woon-Geun;Yoo, Hong-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we suggested a new antenna structure for the RFID(Radio Frequency IDentification) reader. The conventional RFID reader uses a loop antenna. The central area of a loop antenna shows a low magnetic field strength, especially for the case of a large loop antenna diameter. We proposed a parallel-fed multiple loop antenna. Simulation and measurement were carried out for a single loop antenna, series-fed and parallel-fed multiple loop antennas. Simulation results show that we can obtain 0.40A/m, 0.68A/m, 1.98A/m of magnetic field strengths at the central point of a reader antenna for a single loop antenna, series-fed and parallel-fed multiple loop antennas, respectively. We measured the $79mm{\time}48mm$ tag area averaged induced voltages with applying 20Vp-p same source signals to reader antennas through the resistors. Measured tag area averaged induced voltages at the central point of a reader antennas were 0.76V, 1.45V, 4.04V for a single loop antenna series-fed and parallel-fed multiple loop antennas, respectively. The results show that we can get high induced voltage which can grantee a longer reading distance with a proposed parallel-fed multiple loop antenna.

Zero-Voltage Switching Dual Inductor-fed DC-DC Converter Integrated with Parallel Boost Converter

  • Seong, Hyun-Wook;Park, Ki-Bum;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.523-525
    • /
    • 2008
  • Novel zero-voltage switching(ZVS) dual inductor-fed DC-DC converter integrating a conventional dual inductor-fed boost converter(DIFBC) and a parallel bidirectional boost converter has been proposed. Most of current-fed type boost topologies including dual inductor schemes have crucial defects such as a high voltage spike on the main switch when it comes to turning off, an unattainable soft start-up due to the limited range of duty ratio, above 50%, and considerable switching losses due to the hard switching. By adding two auxiliary switches and an output capacitor on the conventional DIFBC, the proposed circuit can solve mentioned problems and improve the efficiency with simple methods. The operational principle and theoretical analysis of the proposed converter have been included. Experimental results based on a 42V input, 400V/1A output and 50kHz prototype are shown to verify the proposed scheme.

  • PDF

A Feasibility Design of PEMFC Parallel Operation for a Fuel Cell Generation System

  • Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.408-421
    • /
    • 2008
  • In this paper, the parallel operation for a FC generation system is introduced and designed in order to increase the capacity for the distributed generation of a proton exchange membrane fuel cell (PEMFC) system. The equipment is the type that is used by parallel operated PEMFC generation systems which have two PEMFC systems, two dc/dc boost converters with shared dc link, and a grid-connected dc/ac inverter for embedded generation. The system requirement for the purpose of parallel operated generation using PEMFC system is also described. Aspects related to the mechanical (MBOP) and electrical (EBOP) component, size, and system complexity of the distributed generation system, it is explained in order to design an optimal distributed generation system using PEMFC. The optimal controller design for the parallel operation of the converter is suggested and informative simulations and experimental results are provided.

Design of 5" True Color FED Driving System (5″ FED True Color 구동시스템 설계)

  • Shin, Hong-Jae;Choi, Chang-Woon;Kim, Jin;Choi, Jeong-Og;Kwon, Oh-Kyong
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.65-68
    • /
    • 2000
  • We design a new driving system of 5" true color FED using current controlled PWM method. Further more, we successfully developed a 5" FED panel, which resolution is 320$\times$240(Color). When we design a 5" FED driving circuit, FED tips are modeled as R-C for circuit simulator of FED driving circuit. In Video data processing, parallel R, G, B input signals is processed independently, so duty ratio increase and no noise, high quality performance is achieved in display of 5" FED. The luminance is about 100cd/$m^2$, the anode power consumption Is 2.1W and total power of the driving system is 21.54W

  • PDF

Parallel Operation of Trans-Z-Source Network Full-Bridge DC-DC Converter for Wide Input Voltage Range

  • Lee, Hyeong-Min;Kim, Heung-Geun;Cha, Hon-Nyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • This paper presents a novel transformer isolated parallel connected full-bridge dc-dc converter using recently developed trans-Z-source network. Unlike the traditional voltage -fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost function can be achieved and the converter reliability can be greatly improved. A 6 kW prototype dc-dc converter is built and tested to verify performances of the proposed converter.

Parallel Sensorless Speed Control using Flux-axis Current for Dual SPMSMs Fed by a Single Inverter

  • Kim, Chang-Bum;Yun, Chul;Yoon, Byung-Keun;Cho, Nae-Soo;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1048-1057
    • /
    • 2015
  • This paper proposes a sensorless speed control algorithm for parallel-connected dual Surface-mounted Permanent Magnet Synchronous Motors (SPMSMs) fed by a single inverter. For stable parallel operation of synchronous motors with a single inverter, each motor has to be constantly kept in the synchronization state regardless of load torque. If the master motor with the larger load is controlled, the synchronous state will be maintained. Therefore, detection of the master motor is essential. Conventionally, the master motor is determined by comparing the rotor position error from the relation between the back-EMF for torque angle and the flux position; consequently, the position sensor is deemed essential for finding the rotor position. The parallel sensorless speed control method proposed in this paper uses no position sensor, instead it compares the flux-axis current from the connection between the back-EMF for torque angle and current in unbalanced load conditions. The results of simulation and experiment conducted verify the efficacy of the proposed method.

Parallel Operation Characteristics of Two Linear Induction Motors (선형 유도전동기의 병렬 운전 특성 실험)

  • Park Seung-Chan;Kim Kyung-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.44-48
    • /
    • 2005
  • In general, the parallel-connected linear induction motors(LIM) are fed by one VVVF inverter in the magnetically levitated vehicle(MAGLEV) or linear motor subway drives. The air gap length of the parallel-connected linear induction motors operating at a grade or curved sections can be different each other. The air gap difference of the two motors attached to the same module causes unequal phase currents, asymmetic thrust and attraction force generation. In this paper, parellel-connected linear induction motors are operated by one IGBT inverter under the different air gap condition so that the phase current characteristics are examined experimentally.

  • PDF