• Title/Summary/Keyword: parallel tunnel

Search Result 146, Processing Time 0.031 seconds

Distance between the Parallel Shield tunnel and Application (병렬 쉴드터널의 이격거리와 적용사례)

  • Kwak Chul-Hong;Kim Jae-Young;Kim Dong-Hyun;Lee Du-Hwa;Lee Seung-Bok;Kim Eung-Tae;Shim Jai-Beom
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.225-232
    • /
    • 2005
  • The construction of parallel tunnel by using the shield TBM method was increased recently. Accordingly the application and the propriety of the parallel shield TBM tunnels were studied through domestic and foreign construction cases herein. Also the behavior of tunnel structure and ground was evaluated by a numerical analysis with various ground conditions and the distance between the parallel tunnels. As a result, it was concluded that a deep investigation as well as a ground reinforcement was required with a ratio(L/D) of the distance between the parallel tunnels(L) to tunnel outer diameter(D) less than 0.5 because the Interference phenomenon was expected to occur. And the appropriateness of the application method of parallel shield TBM tunnel was validated through the 2-dimensional numerical analysis simulated the process of excavation after the ground reinforcement in the starting area of the OOO construction site with the ratio(L/D) of 0.35.

  • PDF

Analysis of Strategies for Installing Parallel Stations in Assembly Systems

  • Leung, John W.K.;Lai, K.K.
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • An assembly system (AS), a valuable tool for mass production, is generally composed of a number of workstations and a transport system. While the workstations perform some preplanned operations, the transport system moves the assemblies by special designed pallets from one station to another. One common problem associated with automatic assembly systems is that some assembly operations may have relatively long cycle times. As a consequence, the productivity, as determined by the operations with the longest cycle time, can be reduced significantly. Therefore, special forms of parallel workstations were developed to improve the performance of an assembly system. In this paper, three most commonly used parallel stations: on-line, off-line and tunnel-gated stations in a free transfer assembly system are studied via discrete event simulation. Our findings revealed that the off-line parallel system has the best performance because the two independent parallel stations can lower the buffer requirement; reduce the sensitivity to variability of processing time and balance of a line. On-line parallel systems were found to have a relatively poor performance, because the operations of two parallel stations block each other, and higher buffer capacity is required to achieve similar capacity. The tunnel-gated system was more efficient than the on-line system since the first parallel station can operate independently. More importantly, we have quantified the productivity of the three different strategies mentioned. Engineers can choose the optimal strategies for installing parallel stations under their working environment.

A study on the stability analysis for asymmetry parallel tunnel with rock pillar (암반 필라를 포함한 비대칭 근접 병설터널의 안정성 평가에 관한 연구)

  • Kim, Do-Sik;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.387-401
    • /
    • 2007
  • Recently, because of the restriction of land for construction and interference of adjacent structure, parallel tunnels with small clearance have been planned and constructed in many sites. In this case, the stability of pillar at center part is very important factor to satisfy the stability of tunnel structure under the construction. In this paper, numerical analyses for the asymmetry parallel tunnels with a narrow width of pillar have been carried out to search for the optimum reinforcement measure for rock pillar and verify the stability of tunnel. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The analysis of stress state at rock pillar at various cases for construction conditions is required to investigate the structural behaviour of tunnels and stability of the pillar. Strength-stress ratio is calculated based on the failure theory of rock and the safety factor of tunnel is computed with strength reduction technique. Through these numerical results, reasonable reinforcement measures for rock pillar at parallel tunnel were established and recommended.

  • PDF

Review of Mechanical Behaviors of Pillar in Large Parallel Tunnel (대단면 근접병설터널에서의 필러부 거동특성 검토)

  • Sin, Young-Wan;Kim, Young-Geun
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.131-144
    • /
    • 2010
  • The design and construction of tunnels has been followed an large parallel tunnels with a small clearance because of the various conditions. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The stability of pillar is very important for the ensure the stability of the large parallel tunnels. In this study, the analysis of stress state of pillar at various construction cases is reviewed to investigate the mechanical behaviour of tunnels and stability of the pillar.

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.

A Numerical Study on the Reinforcement Method of a Pillar Using Tension Bolts at the Connecting Part between 2-Arch Tunnels and Parallel Tunnels (2-Arch 터널과 병렬 터널 접속부에서의 텐션볼트를 사용한 필라 보강 방법에 대한 수치해석)

  • Park, Yeon-Jun;Choi, Jae-Jin
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.470-486
    • /
    • 2015
  • Two-arch tunnels require minimal spacing between the 2 tunnels and thus occupy small amount of land compared to parallel tunnels. But it is rather expensive. The parallel tunnel is not as expensive, but it requires more land than 2-arch tunnels. This may cause a problem when there is a land shortage. The new design is to connect these two types of tunnels by another pair of parallel tunnels where the separation distance is gradually increasing. The applicability of this new design to the cases where rock condition is not even fair has to be verified since the width of the pillar between the connecting tunnels can be quite narrow. Therefore both two and three dimensional numerical analyses were conducted and pillar stability was examined for rock classes IV and V in two different ways. Results showed that this new design is still effective for poor rock conditions if central pillar is properly reinforced by tension bolts as long as overburden is less than five times of the tunnel diameter.

Assessment of minimum pillar width and reinforcement of parallel tunnel using numerical analysis and field monitoring (수치해석과 현장계측을 통한 병렬터널의 최소 필라폭과 보강에 대한 평가)

  • An, Yong-Koan;Kong, Suk-Min;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.299-310
    • /
    • 2014
  • Nationally, tunnel and underground constructions are necessary for the environmental sustainability and the efficient use of land space. For the importance of eco-friendly circumstances, 2-arch or large road tunnel has been designed so far. However, such a 2-arch or large tunnel has problems in terms of cost, constructability, construction period, and maintenance. Therefore, in this study, tunnel behavior and stability of rock pillar according to the pillar width and cover depth for parallel tunnels are investigated by performing FE analysis and using empirical formula. According to the results, Rock pillar is reinforced for distributed vertical load by Tie-Bolt due to unpredicted ground deformation, and the reinforced rock pillar's behaviour from the FE analysis shows a quite good agreement with field measurement. According to ground conditions, if the pillar width of the parallel tunnels is reduced, it can be more efficient in use of the tunnel space compared to previous tunnels.

Effect of interference and Ground Movement by Twin Tunnelling (쌍굴터널 굴진에 따른 주변지반의 거동과 간섭효과)

  • 김학문
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.136-142
    • /
    • 1997
  • The behaviour of ground movement during the construction of two parallel tunnels in weathered zone and soft rock has been investigated. All the influencing factors for the behaviour of twin tunnel such as tunnel size, ground conditions, tunnel depth, pillar width and initial state of ground stresses were examined The results of FEM nonlinear analysis were compared with some of model test results in weathered zone to verify the numerical method. It was found that minimum interference was obtained in the parallel construction case when the twin tunnel distance (pillar width) is just over the twice of tunnel diameter. Guide line for the interference of twin tunnelling has been introduced for the ground of weathered zone and soft rock.

  • PDF

A Study on the Estimation of the Behaviors by Compression Method of Rock Pillar between Close Parallel Tunnels (근접 병설터널에서 필라 압축방법에 따른 필라부 강도특성 변화에 관한 연구)

  • Kim, Jae-Kyoung;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.87-94
    • /
    • 2013
  • In recent years, tunnel construction is being increased in order to resolve traffic congestion around urban area, however there are a lot of difficulties due to restrictions such as interference with existing alignment, adjacent structures and cost increase of land acquisition as well as public complaints for negative environmental impacts near the expected tunnel construction site. Therefore, applications of close parallel tunnel have been increasing greatly. But close parallel tunnels cannot guarantee the stability compared with normal parallel tunnel which has enough distance between tunnels. So various methods to strengthen the pillar have been introduced recently, however there is few methods which consider the pillar behaviour in the state of compression. In this paper, the reinforcement methods which reflect the behavior of pillar were reviewed with comparision and analysis by numerical method.

Evaluation of blasting vibration with center-cut methods for tunnel excavation

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Kim, Nam-Soo
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.423-435
    • /
    • 2022
  • Ground vibration generated repeatedly in blasting tunnel excavation sites is known to be one of the major hazards induced by blasting operations. Various studies have been conducted to minimize these hazards, both theoretical and empirical methods using electronic detonator, the deck charge method, the center-cut method among others Among these various existing methods for controlling the ground vibration, in this study, we investigated the cut method. In particular, we analyzed and compared the V-cut method, which is commonly used in tunnel blasting, to the double-drilled parallel method, which has recently been introduced in tunnel excavation site. To understand the rock fragmentation efficiency as well as the ground vibration controllability of the two methods, we performed in-situ field blasting tests with both cut methods at a tunnel excavation site. Additionally, numerical analysis by FLAC3D has been executed for a better understanding of fracture propagation pattern and ground vibration generation by each cut method. Ground vibration levels, by PPVs measured in field blasting tests and PPVs estimated in numerical simulations, showed a lower value in the double-drilled parallel compared with the V-cut method, although the exact values are quite different in field measurement and numerical estimation.