• 제목/요약/키워드: parallel search algorithm

검색결과 160건 처리시간 0.028초

A Parallel Search Algorithm and Its Implementation for Digital k-Winners-Take-All Circuit

  • Yoon, Myungchul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권4호
    • /
    • pp.477-483
    • /
    • 2015
  • The k-Winners-Take-All (kWTA) is an operation to find the largest k (>1) inputs among N inputs. Parallel search algorithm of kWTA for digital inputs is not invented yet, so most of digital kWTA architectures have O(N) time complexity. A parallel search algorithm for digital kWTA operation and the circuits for its VLSI implementation are presented in this paper. The proposed kWTA architecture can compare all inputs simultaneously in parallel. The time complexity of the new architecture is O(logN), so that it is scalable to a large number of digital data. The high-speed kWTA operation and its O(logN) dependency of the new architecture are verified by simulations. It takes 290 ns in searching for 5 winners among 1024 of 32 bit data, which is more than thousands of times faster than existing digital kWTA circuits, as well as existing analog kWTA circuits.

Model-Based Tabu Search Algorithm for Free-Space Optical Communication with a Novel Parallel Wavefront Correction System

  • Li, Zhaokun;Zhao, Xiaohui;Cao, Jingtai;Liu, Wei
    • Journal of the Optical Society of Korea
    • /
    • 제19권1호
    • /
    • pp.45-54
    • /
    • 2015
  • In this study, a novel parallel wavefront correction system architecture is proposed, and a model-based tabu search (MBTS) algorithm is introduced for this new system to compensate wavefront aberration caused by atmospheric turbulence in a free-space optical (FSO) communication system. The algorithm flowchart is presented, and a simple hypothetical design for the parallel correction system with multiple adaptive optical (AO) subsystems is given. The simulated performance of MBTS for an AO-FSO system is analyzed. The results indicate that the proposed algorithm offers better performance in wavefront aberration compensation, coupling efficiency, and convergence speed than a stochastic parallel gradient descent (SPGD) algorithm.

Object tracking algorithm of Swarm Robot System for using Polygon based Q-learning and parallel SVM

  • Seo, Snag-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.220-224
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Parallel SVM algorithm for object search with multiple robots. We organized an experimental environment with one hundred mobile robots, two hundred obstacles, and ten objects. Then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning, and dodecagon-based Q-learning and parallel SVM algorithm to enhance the fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process. In this paper, the result show that dodecagon-based Q-learning and parallel SVM algorithm is better than the other algorithm to tracking for object.

병렬 적응 진화알고리즘을 이용한 발전기 기동정지계획에 관한 연구 (A Parallel Adaptive Evolutionary Algorithm for Thermal Unit Commitment)

  • 김형수;조덕환;문경준;이화석;박준호;황기현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권9호
    • /
    • pp.365-375
    • /
    • 2006
  • This paper is presented by the application of parallel adaptive evolutionary algorithm(PAEA) to search an optimal solution of a thermal unit commitment problem. The adaptive evolutionary algorithm(AEA) takes the merits of both a genetic algorithm(GA) and an evolution strategy(ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. To reduce the execution time of AEA, the developed algorithm is implemented on an parallel computer which is composed of 16 processors. To handle the constraints efficiently and to apply to Parallel adaptive evolutionary algorithm(PAEA), the states of thermal unit are represented by means of real-valued strings that display continuous terms of on/off state of generating units and are involved in their minimum up and down time constraints. And the violation of other constraints are handled by repairing operator. The procedure is applied to the $10{\sim}100$ thermal unit systems, and the results show capabilities of the PAEA.

O(log n)의 병렬 시간이 소요되는 Solid Grid 그래프를 위한 Depth-First Search 알고리즘 ((An O(log n) Parallel-Time Depth-First Search Algorithm for Solid Grid Graphs)

  • 허준호
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권7호
    • /
    • pp.448-453
    • /
    • 2006
  • 본 논문은 평면 그래프를 위한 병렬 depth-first search (DFS) 알고리즘 [SIAM J. Comput., 19 (1990) 678-704]을 비 평면일 (non-planar) 수 있는 grid 그래프의 한 종류인 solid grid 그래프에 대해서도 수행 가능하도록 확장된 알고리즘을 제안한다. 제안 알고리즘은 Priority PRAM 모델에서 $O(n/sqrt{log\;n})$개의 프로세서로 수행했을 때 O(log n)의 병렬 시간이 소요된다. 우리의 지식으로, 이는 비 평면 그래프를 위한 첫 번째 결정적 NC (deterministic NC) 알고리즘이다.

동일한 병렬기계 일정계획에서 평균지연시간의 최소화를 위한 Tabu Search 방법 (Applying Tabu Search to Minimize Mean Tardiness in the Parallel Machine Scheduling)

  • 전태웅;강맹규
    • 산업경영시스템학회지
    • /
    • 제18권35호
    • /
    • pp.107-114
    • /
    • 1995
  • This paper proposes the Tabu Search algorithm to minimize mean tardiness in the parallel machine scheduling problem. The algorithm reduces the computation time by employing restricted neighborhood and produces an efficient solution in this problem.

  • PDF

PC 클러스터 기반 병렬 유전 알고리즘-타부 탐색을 이용한 배전계통 고장 복구 (PC Cluster Based Parallel Genetic Algorithm-Tabu Search for Service Restoration of Distribution Systems)

  • 문경준;이화석;박준호;김형수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권8호
    • /
    • pp.375-387
    • /
    • 2005
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search (GA-TS) algorithm to search an optimal solution of a service restoration in distribution systems. The main objective of service restoration of distribution systems is, when a fault or overload occurs, to restore as much load as possible by transferring the do-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints, which is a combinatorial optimization problem. This problem has many constraints with many local minima to solve the optimal switch position. This paper develops parallel GA-TS algorithm for service restoration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solutions of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper $10\%$ of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC cluster system consists of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through ethernet switch based fast ethernet. To show the validity of the proposed method, proposed algorithm has been tested with a practical distribution system in Korea. From the simulation results, we can find that the proposed algorithm is efficient for the distribution system service restoration in terms of the solution quality, speedup, efficiency and computation time.

배전계통 최적 재구성 문제에 PC 클러스터 시스템을 이용한 병렬 유전 알고리즘-타부 탐색법 구현 (Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems)

  • 문경준;송명기;김형수;김철홍;박준호;이화석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.556-564
    • /
    • 2004
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search(GA-TS) algorithm to search an optimal solution of a reconfiguration in distribution system. The aim of the reconfiguration of distribution systems is to determine switch position to be opened for loss minimization in the radial distribution systems, which is a discrete optimization problem. This problem has many constraints and very difficult to solve the optimal switch position because it has many local minima. This paper develops parallel GA-TS algorithm for reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10% of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node aster predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium Ⅳ CPU and is connected with others through ethernet switch based fast ethernet. To show the usefulness of the proposed method, developed algorithm has been tested and compared on a distribution systems in the reference paper. From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution qualify. speedup. efficiency and computation time.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.

병렬 기계 스케줄링을 위한 제한적 이웃해 생성 방안 (A Restricted Neighborhood Generation Scheme for Parallel Machine Scheduling)

  • 신현준;김성식
    • 산업공학
    • /
    • 제15권4호
    • /
    • pp.338-348
    • /
    • 2002
  • In this paper, we present a restricted tabu search(RTS) algorithm that schedules jobs on identical parallel machines in order to minimize the maximum lateness of jobs. Jobs have release times and due dates. Also, sequence-dependent setup times exist between jobs. The RTS algorithm consists of two main parts. The first part is the MATCS(Modified Apparent Tardiness Cost with Setups) rule that provides an efficient initial schedule for the RTS. The second part is a search heuristic that employs a restricted neighborhood generation scheme with the elimination of non-efficient job moves in finding the best neighborhood schedule. The search heuristic reduces the tabu search effort greatly while obtaining the final schedules of good quality. The experimental results show that the proposed algorithm gives better solutions quickly than the existing heuristic algorithms such as the RHP(Rolling Horizon Procedure) heuristic, the basic tabu search, and simulated annealing.