• Title/Summary/Keyword: parallel method

Search Result 3,783, Processing Time 0.026 seconds

Improved Droop Method for Converter Parallel Operation in Large-Screen LCD TV Applications

  • Kim, Jung-Won;Jang, Paul
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2014
  • Current sharing between modules in a converter parallel operation is very important for the reliability of the system. This paper proposes an improved droop method that can effectively improve current sharing accuracy. The proposed method adaptively adjusts the output voltage set-point of each module according to the current set-points. Unlike conventional droop control, modules share a signal line to communicate with each other. Nevertheless, since signals are simple and in digital form, the complexity of the circuitry is much less and noise immunity is much better than those of conventional methods utilizing communication. The operation principle and design procedure of the proposed method are described in detail. Results of the experiment on two boost converters operating in parallel under the specification of a TFT LCD TV panel power supply verify the validity of the proposed scheme.

Study of Efficient Parallel Computation of Cholesky's Method in FE Mesh (유한요소망에서의 효율적인 직접해법 병렬계산에 관한 연구)

  • Lee, H.B.;Choi, K.;Kim, H.J.;Jung, H.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.68-70
    • /
    • 1996
  • In this paper, an efficient parallel computation method for solving large sparse systems of linear algebraic equations by using Cholesky's method in the finite element method is studied. The methods of minimizing the number of fill-ins in the factorization process of factorization are investigated for minimizing the amount of memory and computation time. The parallel programming is implemented under the PVM(Parallel Virtual Machine) environment. The method of load-distribution is studied for minimizing the computation time and the communication time.

  • PDF

An Extended Evaluation Algorithm in Parallel Deductive Database (병렬 연역 데이타베이스에서 확장된 평가 알고리즘)

  • Jo, U-Hyeon;Kim, Hang-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1680-1686
    • /
    • 1996
  • The deterministic update method of intensional predicates in a parallel deductive database that deductive database is distributed in a parallel computer architecture in needed. Using updated data from the deterministic update method, a strategy for parallel evaluation of intensional predicates is required. The paper is concerned with an approach to updating parallel deductive database in which very insertion or deletion can be performed in a deterministic way, and an extended parallel semi-naive evaluation algorithm in a parallel computer architecture. After presenting an approach to updating intensional predicates and strategy for parallel evaluation, its implementation is discussed. A parallel deductive database consists of the set of facts being the extensional database and the set of rules being the intensional database. We assume that these sets are distributed in each processor, research how to update intensional predicates and evaluate using the update method. The parallel architecture for the deductive database consists of a set of processors and a message passing network to interconnect these processors.

  • PDF

Reduction Characteristics of Electromagnetic Penetration through Narrow Slots in Conducting Screen by Loading Parallel Wire Arrays

  • Kim Ki-Chai;Lim Sung-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • This paper presents a method of reducing penetration of penetrated electromagnetic fields through a narrow slot with parallel wire arrays in a planar conducting screen of infinite extent. An integral equation for the aperture electric field on the narrow slot is derived and solved by applying Galerkin's method of moments. When a plane wave is excited to the narrow slot, the aperture electric field is easily controlled by the parallel wire arrays connected on the slot and therefore the magnitude of the penetrated electric field is effectively reduced by loading the parallel wire arrays. The numerical results show that the magnitude of the penetrated electromagnetic field can be effectively reduced by installing the parallel wire arrays on the slot. The results of the calculated penetration electric fields are in good agreement with that of the measured results.

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

Power Control Method for Reducing Circulating Current in Parallel Operation of DC Distribution System

  • Shin, Soo-Cheol;Lee, Hee-Jun;Kim, Young-Ho;Lee, Jung-Hyo;Lee, Taeck Kie;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1212-1220
    • /
    • 2013
  • In general, for a large power system like DC distribution system for buildings, several power converters are modularized for parallel operation. However, in parallel operation, inconsistency of parameters in each module causes circulating current in the whole system. Circulating current is directly related to loss, and, therefore, it is most important for the safety of the power system to supply the suitable current to each module. This paper proposes a control method to reduce circulating current caused during parallel operation. Accordingly, the validity of parallel operation system including response characteristics and normal state was verified by simulation and experiment result.

A Study on Effect of Domain-Decomposition Method on Parallel Efficiency in 2-D Flow Computations (2차원 유동장 해석에서 영역분할법에 따른 병렬효율성 검토)

  • Lee Sangyeul;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.147-152
    • /
    • 1998
  • 2-D flow fields are studied by using a shared memory parallel computer with a parallel flow analysis program which uses domain decomposition method and MPI library for data exchange at overlapped interface. Especially, effects of directional domain decomposition on parallel efficiency are studied for 2-D Lid-Driven cavity flow and flow through square cavity. It is known from the present study that domain decomposition along the main flow direction gives better parallel efficiency in 1-D partitioning than along the other direction. 2-D partitioning, however, is less sensitive to flow directions and gives good parallel efficiency for most of the cases considered.

  • PDF

Stiffness Analysis of Planar Parallel Manipulators with Serially Connected Legs (직렬체인 다리를 갖는 평면 병렬형 기구의 강성해석)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2014
  • This paper presents a method for analyzing the stiffness of full and low DOF (degree of freedom) planar parallel manipulators with serially connected legs. The individual stiffness of each leg is obtained by applying reciprocal screws to the leg twist using passive joints and elastic elements consisting of actuators and links. Because the legs are connected in parallel, the manipulator stiffness is determined by summing the individual leg stiffness values. This method does not require the assumption that springs should be located along reciprocal screws and is applicable to a planar parallel manipulator with a generic or singular configuration. The stiffness values of three planar parallel manipulators with different DOFs are analyzed. The numerical results are confirmed using ADAMS S/W.

Adaptive Parallel Decomposition for Multidisciplinary Design

  • Park, Hyung-Wook;Lee, Se J.;Lee, Hyun-Seop;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.814-819
    • /
    • 2004
  • The conceptual design of a rotorcraft system involves many different analysis disciplines. The decomposition of such a system into several subsystems can make analysis and design more efficient in terms of the total computation time. Adaptive parallel decomposition makes the structure of the overall design problem suitable to apply the multidisciplinary design optimization methodologies and it can exploit parallel computing. This study proposes a decomposition method which adaptively determines the number and sequence of analyses in each sub-problem corresponding to the available number of processors in parallel. A rotorcraft design problem is solved and as a result, the adaptive parallel decomposition method shows better performance than other previous methods for the selected design problem.

A Parallel Computation of Finite Element Analysis on a Transputer System (트랜스퓨터를 이용한 유안영속해석의 병렬계산)

  • Kim, Keun-Hwan;Choi, Kyung;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.735-741
    • /
    • 1992
  • This paper presents a parallel algorithm for the finite element analysis using relatively inexpensive transputer parallel system. The substructure method, which is highly parallel in nature, is used to improve the parallel computing efficiency by splitting up the whole structure into substructures. The proposed algorithm is applied to a simple two-dimensional magnetostatic problem. It is found that the more the number of transputer is increased, the more the total computation time is reduced. And the computational efficiency becomes better as the number of internal boundary nodes becomes smaller.

  • PDF