• Title/Summary/Keyword: parallel cut

Search Result 126, Processing Time 0.02 seconds

Evaluation of blasting vibration with center-cut methods for tunnel excavation

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Kim, Nam-Soo
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.423-435
    • /
    • 2022
  • Ground vibration generated repeatedly in blasting tunnel excavation sites is known to be one of the major hazards induced by blasting operations. Various studies have been conducted to minimize these hazards, both theoretical and empirical methods using electronic detonator, the deck charge method, the center-cut method among others Among these various existing methods for controlling the ground vibration, in this study, we investigated the cut method. In particular, we analyzed and compared the V-cut method, which is commonly used in tunnel blasting, to the double-drilled parallel method, which has recently been introduced in tunnel excavation site. To understand the rock fragmentation efficiency as well as the ground vibration controllability of the two methods, we performed in-situ field blasting tests with both cut methods at a tunnel excavation site. Additionally, numerical analysis by FLAC3D has been executed for a better understanding of fracture propagation pattern and ground vibration generation by each cut method. Ground vibration levels, by PPVs measured in field blasting tests and PPVs estimated in numerical simulations, showed a lower value in the double-drilled parallel compared with the V-cut method, although the exact values are quite different in field measurement and numerical estimation.

Design of Low-power Serial-to-Parallel and Parallel-to-Serial Converter using Current-cut method (전류 컷 기법을 적용한 저전력형 직병렬/병직렬 변환기 설계)

  • Park, Yong-Woon;Hwang, Sung-Ho;Cha, Jae-Sang;Yang, Chung-Mo;Kim, Sung-Kweon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.776-783
    • /
    • 2009
  • Current-cut circuit is an effective method to obtain low power consumption in wireless communication systems as high speed OFDM. For the operation of current-mode FFT LSI with analog signal processing essentially requires current-mode serial-to-parallel/parallel-to-serial converter with multi input and output structure. However, the Hold-mode operation of current-mode serial-to-parallel/parallel-to-serial converter has unnecessary power consumption. We propose a novel current-mode serial-to-parallel/parallel-to-serial converter with current-cut circuit and full chip simulation results agree with experimental data of low power consumption. The proposed current-mode serial-to-parallel/parallel-to-serial converter promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.

A New Broadband Microstrip-to-SIW Transition Using Parallel HMSIW

  • Cho, Dae-Keun;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.171-175
    • /
    • 2012
  • In this work, a new microstrip-to-substrate integrated waveguide (SIW) transition using the parallel half-mode substrate integrated waveguide (HMSIW) is proposed. The proposed transition consists of three sections : a microstrip, parallel HMSIWs, and an SIW. By inserting the parallel HMSIWs section between the microstrip section and the SIW section, the proposed transition can improve the return loss characteristics of the near cut-off frequency because the HMSIWs section has a lower cut-off frequency than the SIW section (8.6 GHz). The lower cut-off frequency is achieved through gradual electromagnetic field mode changes for a low reflection. The measured return loss is less than 20 dB in the of 9.1~16.28 GHz freqeuncy range for the back-to-back transition. The measured insertion loss is within 1.6 dB for the back-to-back transition. The proposed transition is expected to play an important role in wideband SIW circuits fed by a microstrip.

The Circular Center Cut with Large Empty Hole & Pre-Splitting in Tunnel Blasting (터널에서 대구경 무장약공과 선균열을 이용한 심빼기 공법에 관한 연구)

  • 김재홍;임한욱
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2001
  • The cylindrical cut is most frequently used in tunnel blast regardless of their dimensions. In this study the new parallel cut is proposed to raise advance per round, which is considered to be an elevation of the traditional cylinder cuts. The general geometric pattern of a new cut with parallel blast holes is proposed. The detailed burden and spacing between the central blasthole and those of the four section are also given. The blast results between new cut and traditional cylinder cut are given. The main results of this study are as follows. 1) The average advances per rounds in new cuts can reach 99.5% of drilling length. That of traditional cylinder cuts are known approximately 90∼95% 2) Specific charge weight of new cut compare to that of cylinder cut is approximately reduced 5% from 1.363 to 1.297 kg/㎥ 3) Specific drilling rate is also reduced 8% from 2.393 to 2.130 m/㎥ 4) Vibrations, fly rock, and fragmentation produced by the new blast are to be proved superior to those of the traditional cylinder cuts.

  • PDF

Symbolic Generation of Dynamic Equations and Modeling of a Parallel Robot (기호 운동방정식 생성과 병렬형 로봇 모델링)

  • Song, Sung-Jae;Cho, Byung-Kwan;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A computer program for automatic deriving the symbolic equations of motion for robots using the programming language MATHEMATICA has been developed. The program, developed based on the Lagrange formalism, is applicable to the closed chain robots as well as the open chain robots. The closed chains are virtually cut open, and the kinematics and dynamics of the virtual open chain robot are analyzed. The constraints are applied to the virtually cut joints. As a result, the spatial closed chain robot can be considered as a tree structured open chain robot with kinematic constraints. The topology of tree structured open chain robot is described by a FATHER array. The FATHER array of a link indicates the link that is connected in the direction of base link. The constraints are represented by Lagrange multipliers. The parallel robot, DELTA, having three-dimensional closed chains is modeled and simulated to illustrate the approach.

A Study on Low-Pass Filter using All-Pass Filter of Parallel Structure (병렬 구조의 올패스 필터를 사용한 LPF에 관한 연구)

  • 김승영;김남호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.533-541
    • /
    • 2001
  • In this paper, we proposed lowpass filter using all-pass sums of flat delay characteristics. this filter consisted of all-pass filter of parallel structure, the general analog filter is impossible to adjust the phase and the delay, using the Proposed filter, it has advantage to adjust them. And, we compared and analyzed this filter with passband width and magnitude characteristics, and the relation of group delay characteristics and cut-off frequency. Also, in order to obtain desired cut-off frequency, forming the weighing, we obtained desired cut-off frequency and group delay characteristics.

  • PDF

A Development of Parallel Processing for Power Flow analysis (전력 조류 계산의 병렬처리에 관한 연구)

  • Lee, Chun-Mo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.55-59
    • /
    • 2002
  • Parallel processing is able to be used effectively on computationally intense power system problems. But this technology is not still available is not only parallel computer but also parallel processing scheme. Testing these algorithms to ensure accuracy, and evaluation of their performance is also an issue. Although a significant amount of parallel algorithms of power system problem have been developed in last decade, actual testing on parallel computer architectures lies in the beginning stages because no clear cut paths. This paper presents Jacobian modeling method to supply the base being able to treat power flow by newton's method by the computer. This method is to assign and to compute teared blocks of sparse matrix at each parallel processors. The testing to insure accuracy of developed method have been done on serial computer by trying to simulate a parallel environment.

Effects of Cutting Direction on the Laser Machining Characteristics of Wood (절삭방향(切削方向)이 목재(木材)의 레이저절삭특성(切削特性)에 미치는 영향(影響))

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.87-92
    • /
    • 1996
  • When cutting 2.0cm-thick red oak and hard maple with an air-jet-assisted carbon-dioxide laser of 2kW output power, maximum feed speed at the point of full penetration of the beam decreased with increasing the angle between grain and cutting direction. Feed speed averaged 3.75 and 3.38 meters per minute for red oak and hard maple, respectively. Gray-level of laser-cut surfaces were analyzed by image analysis system. The highest gray level of laser-cut surface was obtained when red oak was cut parallel to grain by laser. Surface profiler was used to scan the sawn and laser-cut surfaces. Center line average roughnesses of laser-cut surfaces were higher than those of sawn surfaces. Scanning electron micrographs showed the cell walls which were melted by laser.

  • PDF

Evaluation of Structural Importance Based on Minimal Cut Set Theory (최소절단집합을 이용한 설비의 구조적 중요도 계산법)

  • Kim, Dong-Jin;Kim, Hyung-Chul;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • A technical system generally comprise a number of subsystems and components that are interconnected in such a way that the system is able to perform a set of required function. Because of the complex system structure with serial, parallel and bridged connections, some certain subsystems or components are more critical than the others. The main concern of a reliability engineer is to identify potential failures and to prevent these failures from occurring. In order to prevent fatal failures, proper inspections and maintenance actions for each component are required Considering above objectives of reliability engineers and characteristics of a practical system, several practical method for evaluating system and component reliabilities have developed namely Birnbaum's and Fussell & Vesely's measures. However there are several critical weaknesses in traditional calculation process as the target system gets larger. In this paper, a new technique for calculating component's structural importance is proposed and compared to Birnbaum's with representative system examples (serial, parallel. k out of n, and bridge type).

Performance Evaluation of Parallel Opportunistic Multihop Routing

  • Shin, Won-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.135-139
    • /
    • 2014
  • Opportunistic routing was originally introduced in various multihop network environments to reduce the number of hops in such a way that, among the relays that decode the transmitted packet for the current hop, the one that is closest to the destination becomes the transmitter for the next hop. Unlike the conventional opportunistic routing case where there is a single active S-D pair, for an ad hoc network in the presence of fading, we investigate the performance of parallel opportunistic multihop routing that is simultaneously performed by many source-destination (S-D) pairs to maximize the opportunistic gain, thereby enabling us to obtain a logarithmic gain. We first analyze a cut-set upper bound on the throughput scaling law of the network. Second, computer simulations are performed to verify the performance of the existing opportunistic routing for finite network conditions and to show trends consistent with the analytical predictions in the scaling law. More specifically, we evaluate both power and delay with respect to the number of active S-D pairs and then, numerically show a net improvement in terms of the power-delay trade-off over the conventional multihop routing that does not consider the randomness of fading.