• Title/Summary/Keyword: parabolic starlike

Search Result 7, Processing Time 0.018 seconds

THE THIRD HERMITIAN-TOEPLITZ AND HANKEL DETERMINANTS FOR PARABOLIC STARLIKE FUNCTIONS

  • Rosihan M. Ali;Sushil Kumar;Vaithiyanathan Ravichandran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.281-291
    • /
    • 2023
  • A normalized analytic function f is parabolic starlike if w(z) := zf' (z)/f(z) maps the unit disk into the parabolic region {w : Re w > |w - 1|}. Sharp estimates on the third Hermitian-Toeplitz determinant are obtained for parabolic starlike functions. In addition, upper bounds on the third Hankel determinants are also determined.

Radius of Starlikeness for Analytic Functions with Fixed Second Coefficient

  • Ali, Rosihan M.;Kumar, Virendra;Ravichandran, V.;Kumar, Shanmugam Sivaprasad
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.473-492
    • /
    • 2017
  • Sharp radius constants for certain classes of normalized analytic functions with fixed second coefficient, to be in the classes of starlike functions of positive order, parabolic starlike functions, and Sokół-Stankiewicz starlike functions are obtained. Our results extend several earlier works.

SUFFICIENT CONDITIONS AND RADII PROBLEMS FOR A STARLIKE CLASS INVOLVING A DIFFERENTIAL INEQUALITY

  • Swaminathan, Anbhu;Wani, Lateef Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1409-1426
    • /
    • 2020
  • Let 𝒜n be the class of analytic functions f(z) of the form f(z) = z + ∑k=n+1 αkzk, n ∈ ℕ defined on the open unit disk 𝔻, and let $${\Omega}_n:=\{f{\in}{\mathcal{A}}_n:\|zf^{\prime}(z)-f(z)\|<{\frac{1}{2}},\;z{\in}{\mathbb{D}}\}$$. In this paper, we make use of differential subordination technique to obtain sufficient conditions for the class Ωn. Writing Ω := Ω1, we obtain inclusion properties of Ω with respect to functions which map 𝔻 onto certain parabolic regions and as a consequence, establish a relation connecting the parabolic starlike class 𝒮P and the uniformly starlike UST. Various radius problems for the class Ω are considered and the sharpness of the radii estimates is obtained analytically besides graphical illustrations.

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • Gochhayat, Priyabrat;Prajapati, Anuja
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.455-472
    • /
    • 2022
  • For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K.;Panigrahi, Trailokya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).

APPLICATIONS OF DIFFERENTIAL SUBORDINATIONS TO CERTAIN CLASSES OF STARLIKE FUNCTIONS

  • Banga, Shagun;Kumar, S. Sivaprasad
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.331-357
    • /
    • 2020
  • Let p be an analytic function defined on the open unit disk 𝔻. We obtain certain differential subordination implications such as ψ(p) := pλ(z)(α+βp(z)+γ/p(z)+δzp'(z)/pj(z)) ≺ h(z) (j = 1, 2) implies p ≺ q, where h is given by ψ(q) and q belongs to 𝒫, by finding the conditions on α, β, γ, δ and λ. Further as an application of our derived results, we obtain sufficient conditions for normalized analytic function f to belong to various subclasses of starlike functions, or to satisfy |log(zf'(z)/f(z))| < 1, |(zf'(z)/f(z))2 - 1| < 1 and zf'(z)/f(z) lying in the parabolic region v2 < 2u - 1.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.