• Title/Summary/Keyword: parabolic Littlewood-Paley operator

Search Result 1, Processing Time 0.015 seconds

Lp BOUNDS FOR THE PARABOLIC LITTLEWOOD-PALEY OPERATOR ASSOCIATED TO SURFACES OF REVOLUTION

  • Wang, Feixing;Chen, Yanping;Yu, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.787-797
    • /
    • 2012
  • In this paper the authors study the $L^p$ boundedness for parabolic Littlewood-Paley operator $${\mu}{\Phi},{\Omega}(f)(x)=\({\int}_{0}^{\infty}{\mid}F_{\Phi,t}(x){\mid}^2\frac{dt}{t^3}\)^{1/2}$$, where $$F_{\Phi,t}(x)={\int}_{p(y){\leq}t}\frac{\Omega(y)}{\rho(y)^{{\alpha}-1}}f(x-{\Phi}(y))dy$$ and ${\Omega}$ satisfies a condition introduced by Grafakos and Stefanov in [6]. The result in the paper extends some known results.