Acknowledgement
Supported by : NSF of China
References
- A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. U.S.A. 48 (1962), 356-365. https://doi.org/10.1073/pnas.48.3.356
- Y. Chen and Y. Ding, The parabolic Littlewood-Paley operator with Hardy space kernels, Canad. Math. Bull. 52 (2009), no. 4, 521-534. https://doi.org/10.4153/CMB-2009-053-8
- Y. Ding, D. Fan, and Y. Pan, Lp boundedness of Marcinkiewicz integrals with Hardy space function kernels, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 4, 593-600. https://doi.org/10.1007/s101140000015
- Y. Ding and Y. Pan, Lp bounds for Marcinkiewicz integrals, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 3, 669-677. https://doi.org/10.1017/S0013091501000682
- E. Fabes and N. Riviere, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38. https://doi.org/10.4064/sm-27-1-19-38
- L. Grafakos and A. Stefanov, Convolution Calderon-Zygmund singular integral operators with rough kernel, Indiana Univ. Math. J. 47 (1998), 455-469.
- A. Nagel, N. Riviere, and S. Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395-403. https://doi.org/10.2307/2373893
- E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. https://doi.org/10.1090/S0002-9947-1958-0112932-2
- E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239-1295. https://doi.org/10.1090/S0002-9904-1978-14554-6
- Q. Xue, Y. Ding, and K. Yabuta, Parabolic Littlewood-Paley g-function with rough kernels, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 12, 2049-2060. https://doi.org/10.1007/s10114-008-6338-6
Cited by
- PARABOLIC MARCINKIEWICZ INTEGRALS ASSOCIATED TO POLYNOMIALS COMPOUND CURVES AND EXTRAPOLATION vol.52, pp.3, 2015, https://doi.org/10.4134/BKMS.2015.52.3.771