• 제목/요약/키워드: paper factory

검색결과 965건 처리시간 0.026초

분류 및 코딩시스템을 이용한 디지털 가상공장 객체의 효율적 관리 (The Efficient Management of Digital Virtual Factory Objects Using Classification and Coding System)

  • 김유석;강형석;노상도
    • 한국CDE학회논문집
    • /
    • 제12권5호
    • /
    • pp.382-394
    • /
    • 2007
  • Nowadays, manufacturing industries undergo constantly growing pressures for global competitions, and they must shorten time and cost in product development and production to response varied customers' requirements. Digital virtual manufacturing is a technology that can facilitate effective product development and agile production by using digital models representing the physical and logical schema and the behavior of real manufacturing systems including products, processes, manufacturing resources and plants. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this paper, we developed a new classification and coding system for effective managements of digital virtual factory objects, and implement a supporting application to verify and apply it. Furthermore, a digital virtual factory layout management system based on the classification and coding system has developed using XML, Visual Basic.NET and FactoryCAD. By some case studies for automotive general assembly shops of a Korean automotive company, efficient management of factory objects and reduction of time and cost in digital virtual factory constructions are possible.

MFD 2019를 활용한 모듈러 유닛의 공장생산 관리 (Factory Production Management of Modular Units Using MFD 2019)

  • 이두용;남성훈;이재섭;정담이;김경래;조봉호
    • 대한건축학회논문집:구조계
    • /
    • 제35권6호
    • /
    • pp.139-146
    • /
    • 2019
  • The modular building system is a type of prefabricated construction method, and is an industrialized building system that transports, assembles, and completes a three-dimensional module manufactured in a factory to the site. The economics of a modular building system where 50 to 80% of the entire process takes place in a modular factory is dominated by productivity of the factory manufacturing process. Since the building of the module is finished by the combination of unit parts produced by each material, it is necessary to manage the process in each module unit. However, currently marketed process control programs do not reflect the features of these modular methods. In this paper, we introduce Modular Factory Design software(MFD 2019) that can make modular unit production plan which reflects production base(modular factory) and production target(application and number of modular units). In order to verify software compatibility and reliability, two production plans with different production methods were formulated and simulated.

4차 산업혁명시대의 스마트 팩토리 구축을 위한 품질전략 (Quality Strategy for Building a Smart Factory in the Fourth Industrial Revolution)

  • 정혜란;배경한;이민구;권혁무;홍성훈
    • 품질경영학회지
    • /
    • 제48권1호
    • /
    • pp.87-105
    • /
    • 2020
  • Purpose: This paper aims to propose a practical strategy for smart factories and a step-by-step quality strategy according to the maturity of smart factory construction. Methods: The characteristics, compositional requirements, and diagnosis system are examined for smart factories through theoretical considerations. Several cases of implementing smart factory are studied considering the company maturity level from the aspect of the smartness concept. And specific quality techniques and innovation activities are carefully reviewed. Results: The maturity level of smart factory was classified into five phases: 1) ICT non-application, 2) basic, 3) intermediate 1, 4) intermediate 2, 5) advanced level. A five-step quality strategy was established on the basis of case studies; identify, measure, analyze, optimize, and customize. Some quality techniques are introduced for step-by-step implementation of quality strategies. Conclusion: To build a successful smart factory, it is necessary to establish a quality strategy that suits the culture and size of the company. The quality management strategy proposed in this paper is expected to contribute to the establishment of appropriate strategies for the size and purpose of the company.

식물재배를 위한 최적LED 배열조합설계 (LED array design for optimal combination of plant grown)

  • 이성원;박세광
    • Journal of Plant Biotechnology
    • /
    • 제41권3호
    • /
    • pp.123-126
    • /
    • 2014
  • This paper is suitable for household plant factory by design and using both energy-saving LED and solar technology. Conventional household plant factory only depending on natural sunlight is sensitive for the change of external environment. Another a big problem of conventional common household plant factory is large power consumption. Recently interest in wellbeing food such as chemical-free is increased abruptly. To solve these two problems, this paper describes hybrid type of household plant. In particular, reducing the power photosynthesis photon flux density (PPFD) is kept uniform to enhance the growth of the plant. Ambient light sensor is adopted for the control of proper combination of sunlight and LED to keep PPFD constant.

Micro-Factory 공정간 마이크로 부품 검사 프로브 개발 (Development of Optical Probe to Inspect Micron Scale Part in Micro-Factory)

  • 김기홍;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.424-428
    • /
    • 2005
  • This paper shows a non-contact optical method to inspect micron scale parts which will be manufactured in micro-factory system. This inspection system should have some characteristics like a small size, flexibility, and high measuring speed. In the viewpoint of measuring capabilities, it also has resolution under micron scale with measuring range over millimeter scale. Two methods will be presented in this paper, one is Moire and the other is white-light scanning interferometry. Also some experimental results will be presented to show the possibilities of the proposed inspection system.

  • PDF

혼류 조립 공장을 위한 계층적 생산 계획 및 통제 시스템 개발 - 냉장고 공장 사례 (Development of Hierarchical Production Planning and Control System for Mixed-Model Assembly Manufacture-an Application in Refrigerator Factory)

  • 신현준
    • 산업공학
    • /
    • 제19권1호
    • /
    • pp.34-42
    • /
    • 2006
  • This paper presents a scheme for a hierarchical production scheduling and control system for a refrigerator factory with mixed model assembly lines. The setting of the factory is as follows. There are three mixed-model assembly lines called main line A, B and C and two batch lines that supply parts to the main lines. For each of the main lines, three work-centers are dedicated to them. The sub-lines and work-centers produce parts in batch type. An incoming production order from the master planner is characterized by its product type, amount, and due date. Under this situation, the proposed scheme has several features to schedule and control the above mentioned factory; 1) select the starting time and the place (assembly line) for an order processing, 2) devise a way to control orders to be processed as scheduled, and 3) reschedule orders when something unexpected happen. Finally, this paper provides a case study where the proposed scheme is applied to.

Design and implementation of IoT platform for collecting and managing the SmartFactory environment information

  • Kim, SungJin;Ra, SangYong;Kim, HwanSeog;Choi, JaeHong;Lee, JunDong
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.109-115
    • /
    • 2019
  • Smart Factory is a part of and a key point of the 4th industrial revolution. It performs optimization from the whole viewpoint, using comprehensive data of the post-process data by utilizing various sensors, controllers, and mobile devices beyond the existing factory automation level. In this paper, we design and implement an IoT platform that can detect the safety factors of the workers, the environmental factors of the factory, and real time monitoring at the control center, among the fields to implement smart factory. To accomplish this, we construct a monitoring device that provides sensor information control, server transmission of sensor information, and visualization of collected information. By using this system, it is possible to maintain the temperature and humidity for the optimum working environment in the factory. and also, By using the beacon, it is possible to measure the working time of the worker and trace the position.

3D 팩토리 시뮬레이션 기술의 특징과 응용 분야에 대한 고찰 (A Survey on Characteristics and Application Domains of 3D Factory Simulation Technology)

  • 조다설;김준우
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권4호
    • /
    • pp.35-70
    • /
    • 2018
  • Purpose Recently, 3D factory simulation technology has emeged as a powerful tool for modeling and analysis of a wide range of production systems, however, it has been not paid much attention in Korea. In this context, this paper aims to provide a comprehensive literature review on discrete event simulation softwares and introduce a promising 3D factory simulation software called FlexSim and its application domains. Design/methodology/approach In order to demonstrate worldwide popularity and technical superiority of FlexSim software, we analyzed the recent list of rankings for commercial discrete simulation softwares released by winter simulation conference and users' opinions collected from business software review site. Moreover, several main application domains are derived from a review of the previous research papers that deal with applications of FlexSim software. Findings FlexSim software recently moved up the list of major commercial simulation softwares, and technical superiorities of the software demonstrate that it is a promising tool for practical 3D factory simulation. Moreover, recent research papers suggest that FlexSim software can be used as a component of smart factory system. In this context, it is expected that FlexSim software becomes more popular in the era of industry 4.0.

CPPS 및 VR을 연계한 스마트팩토리 기반 기술 교육 플랫폼 개발 (Development of Smart Factory-Based Technology Education Platform Linking CPPS and VR)

  • 이현
    • 실천공학교육논문지
    • /
    • 제13권3호
    • /
    • pp.483-490
    • /
    • 2021
  • 본 논문에서는 스마트팩토리 기반의 CPPS(Cyber Physical Production System) 및 VR(Virtual Reality) 기술을 활용한 스마트팩토리 통합 기술 교육 플랫폼 개발과 플랫폼을 활용한 교육 방법들을 제안하였다. 3D 디지털 트윈과 연동이 가능하며 BOP(Bill of Process) 기반의 제조 공정을 통합하는 방법을 학습할 수 있도록 플랫폼을 개발하였다. 또한 디지털 트윈은 OPC-UA 서버를 통해 메카니컬 시스템과 디지털 트윈 뿐만 아니라 가상 현실까지 연계하여 통합 스마트팩토리 기반의 교육 플랫폼을 구축하였다. 이러한 플랫폼을 기반으로 스마트팩토리 통합 플랫폼은 BOP 기반 디지털 트윈 시뮬레이션, OPC-UA 통합, MES 시스템, SCADA 시스템, VR 연동으로 스마트팩토리 통합 플랫폼의 개별 요소들을 가지도록 제안하였다.

스마트 팩토리에서 설비 장애 진단 및 조치 시스템 구조 (A System Architecture for Facility Fault Diagnosis and Repair Action in Smart Factory)

  • 조재형;이재오
    • KNOM Review
    • /
    • 제23권1호
    • /
    • pp.18-25
    • /
    • 2020
  • 최근 스마트 팩토리(Smart Factory)에 대한 연구는 단순히 공장 자동화(Factory Automation, FA)의 개념에서 데이터를 수집하고 분석하는 형태로 발전하고 있다. 이것은 통신 기술의 발전(5G)과 IoT 장치(device)들이 현장 상황에 맞춰 다양하게 개발되면서 가속화 되고 있다. 또한, 기업 경쟁력 강화로 디지털트랜스포메이션(Digital Transformation)이 활발히 이루어지고 있으며, 이를 각종 IoT 장비로 부터 수신한 데이터와 자동화된 설비를 결합시켜 공정 재조정을 통한 최적화 연구가 다양하게 진행되고 있다. 따라서 본 논문에서는 관련 연구 중 하나인 예측 시스템을 활용한 설비 장애 진단 및 조치 시스템 구조 및 요소를 제안한다.