• 제목/요약/키워드: panel evaluation

Search Result 760, Processing Time 0.036 seconds

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Performance Evaluation of Steel Frame with FRP Composite Panel according to Guide System (FRP 패널로 보강한 강골조의 가이드 시스템에 따른 성능평가)

  • Lim, Jeong-Hee;Kwon, Min-Ho;Seo, Hyun-Su;Kim, Jin-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • Since it is impossible to predict earthquakes, they involve more casualties and property damage compared to meteorological disasters such as heavy snow and heat waves, which can be predicted through weather forecasts. This has highlighted the need for seismic design and reinforcement. Recently, the use of composite materials as reinforcement has surged because steel plate reinforcement and section enlargement are likely to result in increased weight and physical damage to structures. This study evaluates the seismic performance of panels created from composite materials, and their guide systems. The specimens were miniature versions of actual steel structures, and displacement loads were applied in the transverse direction. Seismic performance was found to improve when structures were reinforced with seismic panels.

Fire Resistance Performance and Thermal Performance Evaluation of Structural Insulated Panels for Low-Energy Houses (구조단열패널의 저에너지주택 적용을 위한 내화 및 단열성능 평가)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Lee, Cheol-Hee;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.36-46
    • /
    • 2012
  • Structure Insulated Panel (SIP) is an wooden structure material with which structure and insulation functions are satisfied. Hence, it would be a cost-effective model to implement low energy house which has higher insulation and structure performance and which the wall thickness is able to be reduced. In this study, performance of thermal insulation and fire resistance were evaluated in order to verify applicability to low energy house. Fire resistance test is performed on vertical load bearing members for partitions, and the test results satisfy one hour of fire resistance condition according to KS F 2257. The members include two layers of fireproof gypsum board with thicknesses of 12.5mm attached to SIP. Thermal insulation performance is satisfied with the 2012 standard ($0.225W/m^2{\cdot}K$). As the performance of resistance and thermal insulation are satisfied, SIP is expected to be applied to low energy building materials. In the future, the structural safety will be confirmed by structural performance and seismic performance test and the guidelines for distribution will be drawn up.

Added masses computation for unconventional airships and aerostats through geometric shape evaluation and meshing

  • Tuveri, Marco;Ceruti, Alessandro;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-257
    • /
    • 2014
  • The modern development in design of airships and aerostats has led to unconventional configurations quite different from the classical ellipsoidal and spherical ones. This new class of air-vehicles presents a mass-to-volume ratio that can be considered very similar to the density of the fluid displaced by the vehicle itself, and as a consequence, modeling and simulation should consider the added masses in the equations of motion. The concept of added masses deals with the inertia added to a system, since an accelerating or decelerating body moving into a fluid displaces a volume of the neighboring fluid. The aim of this paper is to provide designers with the added masses matrix for more than twenty Lighter Than Air vehicles with unconventional shapes. Starting from a CAD model of a given shape, by applying a panel-like method, its external surface is properly meshed, using triangular elements. The methodology has been validated by comparing results obtained with data available in literature for a known benchmark shape, and the inaccuracies of predictions agree with the typical precision required in conceptual design. For each configuration, a CAD model and a related added masses matrix are provided, with the purpose of assisting the practitioner in the design and flight simulation of modern airships and scientific balloons.

Molecular Dynamics and Quantum Chemical Molecular Dynamics Simulations for the Design of MgO Protecting Layer in Plasma Display Panel

  • Kubo, Momoji;Serizawa, Kazumi;Kikuchi, Hiromi;Suzuki, Ai;Koyama, Michihisa;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kajiyama, Hiroshi;Shinoda, Tsutae;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1049-1052
    • /
    • 2008
  • We developed novel molecular dynamics and quantum chemical molecular dynamics simulators for the design of MgO protecting layer in plasma display panel. These simulators were applied to the investigations on the destruction processes of the MgO protecting layer as well as the evaluation of its second electron emission ability. From the simulation results, we successfully proposed new guidelines for MgO protecting layer with high durability and high second electron emission ability.

  • PDF

Fluid-Oscillation Coupled Analysis for HAWT Rotor Blade (One Degree of Freedom Weak Coupling Analysis with Hinge-Spring Model)

  • Imamura, Hiroshi;Hasegawa, Yutaka;Murata, Junsuke;Chihara, Sho;Takezaki, Daisuke;Kamiya, Naotsugu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.197-205
    • /
    • 2009
  • Since large-scale commercial wind turbine generator systems such as MW-class wind turbines are becoming widely operated, the vibration and distortion of the blade are becoming larger and larger. Therefore the soft structure design instead of the solid-design is one of the important concepts to reduce the structural load and the cost of the wind turbine rotors. The objectives of the study are development of the fluid-structure coupled analysis code and evaluation of soft rotor-blade design to reduce the unsteady structural blade load. In this paper, fluid-structure coupled analysis for the HAWT rotor blade is performed by free wake panel method coupled with hinge-spring blade model for the flapwise blade motion. In the model, the continuous deflection of the rotor blade is represented by flapping angle of the hinge with one degree of freedom. The calculation results are evaluated by comparison with the database of the NREL unsteady aerodynamic experiment. In the analysis the unsteady flapwise moments in yawed inflow conditions are compared for the blades with different flapwise eigen frequencies.

Development of OLED manufacturing process using PLD method (PLD법에 의한 OLED 제작 공정 개발)

  • Kim, Chang-Kyo;Noh, Il-Ho;Jang, Suk-Won;Hong, Chin-Soo;Yang, Sung-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.598-602
    • /
    • 2004
  • Organic light entitling diode panel was fabricated using pulsed laser deposition (PLD) method Nd-YAG laser with Q-Switched and 355 nm pulse was used for the PLD. While TPD(N,N'-Di-[naphthaleny]-N, N'-diphenyl-benzidine) was used as a HTL(Hole transport layer), $Alq_3$(8-Hydroxyquinoline, Aluminum Salt) was used as EML/ETL(Emitting Layer/Electron Transport Layer) Organic pellet was fabricated and employed for the PLD method. The absorbances of the organic films were investigated and the measured absorbance values of TPD and $Alq_3$ films was 362 nm and 399 nm, respectively. The turn-on voltage of the OLED panel was 7.5 V and its luminance was $90\;cd/m^2$

  • PDF

Hinge Mechanism Design of Smooth-Lift-Unit for Flat Panel Display (평판디스플레이용 유연승강유니트의 힌지기구 설계)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Cho, Gyu-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • This study was carried out to minimize the lifting force of a two hinge type stand mechanism. This unit is designed for the display devices in order to enhance the ergonomics for effective height adjustment and maintenance at any preferred position. The unit will be very useful for the mechanism fabricated with a coil spring and disc springs as a torque generator. The maximum and the minimum torque value should be calculated initially for the smooth lift. And the reasonable torque distribution is necessary to prevent any auto lift and auto dropping at any position because the torque generated by coil spring is more sensitive than disc spring in tilting the position. Therefore, the analysis of the coil spring is requisite to issue the specific torque value depending on the distorted angle with securing reliability of a long time storage condition. After the theoretical torque value was calculated, the evaluation was carried out by making a proto-type sample, then distorted angle was updated by experiment. The result of this study can readily be applied to various units for the optimization of the smooth lift.

  • PDF

A Research on the Vibration Characteristics of Vehicle due to Speaker Sound at Low Frequency (저주파 스피커 출력음 대비 차량 진동 특성 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.673-682
    • /
    • 2007
  • Recently the trend of automobile industry is that IQS evaluation index against a sensitivity quality is increasing. To reduce rattle noise due to speaker sound at low frequencies, it is required the advanced technology analysis process of body structure. This paper optimized the design parameters of package tray panel according to the theoretical background about robust design and suggested the design guideline for resonance avoidance and the reduction of vibrational sensitivity considering the excitation frequency of woofer speaker. And this paper described the design process of a door module panel through the sensitivity analysis in case of the door speaker excitation. Finally, the analysis of the quality deviation using mother car is suggested to guarantee the stable characteristics of vehicle vibration in the early stage of vehicle development. These improvements can lead to shortening the time needed to develop better vehicles.

The Study on Image Sensitivity Evaluation For Digital Radiography Image (디지털 방사선 투과영상의 식별도 평가 연구)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • The purpose of this study is to compare the quality of digital radiography image with that of classical film images for welded structure in power plants. The CMOS(Complementary Metal Oxide Semiconductor) flat panel detecter and Agfa D5 film are used to image flaw specimens respectively. In the test, CMOS flat panel detector has been determined to have a better image than that of film image. In the IQI(Image Quality Indicator) transmission test, one or two more line can be seen in digital image than in film image. Digital Radiography Test enabled to successfully detect all defects on the weld specimens fabricated with real reheat stem pipe and boiler tube as well. In the specific comparison test, Digital radiography test detected micro flaws in the size of 0.5 mm in length by 0.5 mm in depth. However, film test has limited it to 1.0 mm in length by 1.0 mm in depth. As a result of this study, digital radiography technology is estimated well enough to perform the inspection in the industry with far more cost effective way, compared to the classical film test.

  • PDF