• 제목/요약/키워드: panel data models

검색결과 275건 처리시간 0.02초

패널자료를 이용한 가로구간 교통사고분석 - 청주시 간선도로를 사례로 - (Traffic Accident Analysis of Link Sections Using Panel Data in the Case of Cheongju Arterial Roads)

  • 김준용;나희;박병호
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.141-146
    • /
    • 2012
  • This study deals with the accident model using panel data which are composed of time series data of 2005 through 2007 and cross sectional data of link sections in Cheongju. Panel data are repeatedly collected over time from the same sample. The purpose of the study is to develop the traffic accident model using the above panel data. In pursuing the above, this study gives particular attentions to deriving the optimal models among various models including TSCSREG (Time Series Cross Section Regression). The main results are as follows. First, 8 panel data models which explained the various effects of accidents were developed. Second, $R^2$ values of fixed effect models were analyzed to be higher than those of random effect models. Finally, such the variables as the sum of the number of crosswalk on intersections and sum of the number of intersections were analyzed to be positive to the accidents.

Dual Generalized Maximum Entropy Estimation for Panel Data Regression Models

  • Lee, Jaejun;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • 제21권5호
    • /
    • pp.395-409
    • /
    • 2014
  • Data limited, partial, or incomplete are known as an ill-posed problem. If the data with ill-posed problems are analyzed by traditional statistical methods, the results obviously are not reliable and lead to erroneous interpretations. To overcome these problems, we propose a dual generalized maximum entropy (dual GME) estimator for panel data regression models based on an unconstrained dual Lagrange multiplier method. Monte Carlo simulations for panel data regression models with exogeneity, endogeneity, or/and collinearity show that the dual GME estimator outperforms several other estimators such as using least squares and instruments even in small samples. We believe that our dual GME procedure developed for the panel data regression framework will be useful to analyze ill-posed and endogenous data sets.

EFFICIENT ESTIMATION IN SEMIPARAMETRIC RANDOM EFFECT PANEL DATA MODELS WITH AR(p) ERRORS

  • Lee, Young-Kyung
    • Journal of the Korean Statistical Society
    • /
    • 제36권4호
    • /
    • pp.523-542
    • /
    • 2007
  • In this paper we consider semiparametric random effect panel models that contain AR(p) disturbances. We derive the efficient score function and the information bound for estimating the slope parameters. We make minimal assumptions on the distribution of the random errors, effects, and the regressors, and provide semiparametric efficient estimates of the slope parameters. The present paper extends the previous work of Park et al.(2003) where AR(1) errors were considered.

A Test for Autocorrelation in Dynamic Panel Data Models

  • Jung, Ho-Sung
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.167-173
    • /
    • 2005
  • This paper presents an autocorrelation test that is applicable to dynamic panel data models with serially correlated errors. The residual-based GMM t-test is a significance test that is applied after estimating a dynamic model by using the instrumental variable(IV) method and is directly applicable to any other consistently estimated residuals. Monte Carlo simulations show that the t-test has considerably more power than the $m_2$ test or the Sargan test under both forms of serial correlation (i.e., AR(1) and MA(1)).

  • PDF

A TEST FOR AUTOCORRELATION IN DYNAMIC PANEL DATA MODELS

  • Jung, Ho-Sung
    • Journal of the Korean Statistical Society
    • /
    • 제34권4호
    • /
    • pp.367-375
    • /
    • 2005
  • This paper presents an autocorrelation test that is applicable to dynamic panel data models with serially correlated errors. The residual-based GMM t-test is a significance test that is applied after estimating a dynamic model by using the instrumental variable (IV) method and is directly applicable to any other consistently estimated residuals. Monte Carlo simulations show that the t-test has considerably more power than the $m_2$ test or the Sargan test under both forms of serial correlation (i.e., AR(1) and MA(1)).

주변화 모형을 이용한 의료 패널 이진 데이터 분석 (Analysis of medical panel binary data using marginalized models)

  • 오채영;이근백
    • 응용통계연구
    • /
    • 제37권4호
    • /
    • pp.467-484
    • /
    • 2024
  • 경시적 자료는 같은 개체를 반복 측정함으로써 시간의 흐름에 따른 반복 측정된 자료들 간의 상관관계가 존재한다. 따라서 경시적 자료분석에서는 이 상관관계를 분석할 때 개체 내 상관관계와 개체 간 변동성 모두를 고려해야 한다. 본 논문에서는 경시적 이진 자료를 분석하기 위한 모형 중 공변량의 모집단 평균 효과의 추정을 위해 주변화 모형에 집중하고자 한다. 경시적 이진 자료분석을 위한 주변화 모형으로는 주변화 임의효과, 주변화 전이, 주변화 전이 임의효과 모형이 있으며, 본 논문에서 이들 모형을 먼저 고찰하고, 그리고 모형들의 성능을 비교하기 위해 결측치가 없는 자료와 결측치가 있는 자료로 나눠서 모의실험을 진행한다. 모의실험에서 자료에 결측치가 있는 경우에 자료가 생성된 모형에 따른 성능 차이가 있음을 확인하였다. 마지막으로 주변화 모형을 이용하여 한국의료패널자료를 분석한다. 한국의료패널자료는 반응변수로 주관적 불건강 응답을 이진변수로 고려하였고, 여러 설명변수를 가진 모형을 비교하고 가장 적합한 모형을 제시한다.

SP 패널데이터의 Bias를 고려한 동적모델 (Dynamic Model Considering the Biases in SP Panel data)

  • 남궁문;성수련;최기주;이백진
    • 대한교통학회지
    • /
    • 제18권6호
    • /
    • pp.63-75
    • /
    • 2000
  • SP 데이터는 데이터 수집의 효율이 RP 데이터 보다 높고 장래의 교통 시스템의 조건이나 속성에 대한 응답자들의 태도를 조사 할 수 있다는 점에서 많이 사용되고 있으나 SP 데이터는 주요하게 두 가지 편위를 가지고 있는데 SP 설문조사시에 발생하는 응답편위와 SP 패널조사시에 발생하는 누락편위이다. 이러한 SP 데이터의 편위가 수정되지 않으면 장래의 잘못된 교통수요예측을 유발할 수 있다. 따라서 본 연구에서는 이러한 SP 모델의 편위와 상태의존을 고려한 모델을 구축하기 위하여 6개의 횡단면 모델과 동적모델을 제안하였다. 횡단면 모델 중 RP데이터의 선택결과를 고려한 모델을 이용하여 SP모델의 편위를 보완할 수 있는 모델을 구축할 수 있었으며 동적모델의 경우에 패널데이터의 상태의존도를 지수함수로 가정하여 상태의존도를 고려한 동적모델을 구축하였다. 또한 패널조사시에 필연적으로 발생하는 누락데이터에 의한 누락편위를 모델에 고려하기 위하여 WESML방법을 적용하여 모델을 구축하였으며 그 결과 상태의존도를 보다 세밀하게 제어함으로서 모델의 설명력을 개선시키고 향후 SP 패널데이터를 이용한 동적모델의 적용성을 높일 수 있음을 알 수 있었다. 본 연구에서는 모델의 유용성을 검토하기 위하여 전주시의 외각 지역인 호남제일문 방향에서 도심으로 접근하는 3개의 주경로(천변로, 기린로, 팔달로)에 대한 패널조사 자료를 바탕으로 모델을 구축하였다.

  • PDF

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • 제29권3호
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.

상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구 (Predicting claim size in the auto insurance with relative error: a panel data approach)

  • 박흥선
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.697-710
    • /
    • 2021
  • 상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.