• Title/Summary/Keyword: packet priority

Search Result 243, Processing Time 0.021 seconds

Energy Efficient and Multimedia Traffic Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적이고 멀티미디어 트래픽에 적합한 MAC 프로토콜)

  • Kim, Seong Cheol;Kim, Hye Yun;Kim, Joong Jae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1460-1465
    • /
    • 2016
  • In this paper, we propose an energy efficient and multimedia traffic friendly MAC protocol (EEMF-MAC) that controls sender's wakeup period based on the data packet's transmission urgency and the receiver's wakeup periods based on the received data packet traffic loads. The protocol is useful for applications such as object tracking, real time data gathering, in which priority-based packet transmission is required. The basic idea of EEMF-MAC is that it uses the priority concept with transmission urgency of sender's data packet to reduce the transmission delay of the urgent data and it also uses duty cycling technique in order to achieve energy efficiency. EEMF-MAC showed a better performance in energy efficiency and packet transmission delay compared to existing protocols, RI-MAC and EE-RI-MAC.

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.

Priority-based Reservation Code Multiple Access (P-RCMA) Protocol (우선순위 기반의 예약 코드 다중 접속 (P-RCMA) 프로토콜)

  • 정의훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.187-194
    • /
    • 2004
  • We propose priority-based reservation code multiple access (P-RCMA) which can enhance voice traffic quality of the previous RCMA. The proposed protocol maintains two power levels and consider traffic characteristics in contending shared available codes to transmit packets. P-RCMA gives priority to the voice request packets rather than data packets by capture effect at the receiver part of base station. We show numerical results from EPA (equilibrium point analysis) analysis and simulation study in terms of voice packet dropping probability and average data packet transmission delay.

Downlink Wireless Adaptive Modulation and Coding Scheme (AMC)-based Priority Queuing Scheduling Algorithm for Multimedia Services

  • Park, Seung-Young;Kim, Dong-Hoi
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1622-1631
    • /
    • 2007
  • To realize the wireless packet scheduler which efficiently considers both the effect of adaptive modulation and coding (AMC) scheme due to variable wireless communication channel information from physical layer and the QoS differentiation of multimedia services from internet protocol (IP) layer, this paper proposes a new downlink AMC-based priority queuing (APQ) scheduler which combines AMC scheme and service priority method in multimedia services at the same time. The result of numerical analysis shows that the proposed APQ algorithm plays a role in increasing the number of services satisfying the mean waiting time requirements per each service in multimedia services because the APQ scheme allows the mean waiting time of each service to be reduced much more than existing packet scheduler having only user selection processor.

  • PDF

A Fast and Scalable Priority Queue Hardware Architecture for Packet Schedulers (패킷 스케줄러를 위한 빠르고 확장성 있는 우선순위 큐의 하드웨어 구조)

  • Kim, Sang-Gyun;Moon, Byung-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.55-60
    • /
    • 2007
  • This paper proposes a fast and scalable priority queue architecture for use in high-speed networks which supports quality of service (QoS) guarantees. This architecture is cost-effective since a single queue can generate outputs to multiple out-links. Also, compared with the previous multiple systolic array priority queues, the proposed queue provides fast output generation which is important to high-speed packet schedulers, using a special control block. In addition this architecture provides the feature of high scalability.

Priority-Based Network Interrupt Scheduling for Predictable Real-Time Support

  • Lee, Minsub;Kim, Hyosu;Shin, Insik
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.108-117
    • /
    • 2015
  • Interrupt handling is generally separated from process scheduling. This can lead to a scheduling anomaly and priority inversion. The processor can interrupt a higher priority process that is currently executing, in order to handle a network packet reception interruption on behalf of its intended lower priority receiver process. We propose a new network interrupt handling scheme that combines interrupt handling with process scheduling and the priority of the process. The proposed scheme employs techniques to identify the intended receiver process of an incoming packet at an earlier phase. We implement a prototype system of the proposed scheme on Linux 2.6, and our experiment results show that the prototype system supports the predictable real-time behavior of higher priority processes even when excessive traffic is sent to lower priority processes.

Improving TCP Performance by Implicit Priority Packet Forwarding in Mobile IP based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 암시적인 패킷 포워딩 우선권 보장 방안)

  • 허경;이승법;노재성;조성준;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.500-511
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and the wireless link utilization performance degrades due to increased congestion by those forwarded packets. In this paper, considering the case that a mobile user moves to a congested base station in a new foreign subnetwork, we propose an Implicit Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, the old base station marks a buffered packet as a priority packet during handoff. In addition, RED (Random Early Detection) at the new congested base station does not include priority packets in queue size and does not drop those packets randomly based on average queue size. Simulation results show that wireless link utilization performance of mobile hosts can be improved without modification to Mobile IP protocol by applying proposed Implicit Priority Packet Forwarding.

Improving Speech Quality of VoIP by Packet Prioritization (패킷 중요도 결정에 의한 VoIP 통화 품질 향상 기술)

  • Yoon, Jae-Yul;Park, Ho-Chong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.347-353
    • /
    • 2010
  • In VoIP system, the speech quality is seriously degraded due to packet loss, and the degree of degradation by each packet loss depends on the characteristics of the corresponding packet. Therefore, it is possible to improve the speech quality of VoIP by selectively controlling the packet to be lost during transmission based on the expected degradation by the loss of each packet. In this paper, a new scheme to improve speech quality of DiffServ-based VoIP by assigning priority to each packet is proposed, and a method to determine the priority of each packet is developed. The performance of proposed method was measured in packet loss environment based on Gilbert model, and it was verified both objectively and subjectively that the speech quality is improved by the proposed method.

CRP-CMAC: A Priority-Differentiated Cooperative MAC Protocol with Contention Resolution for Multihop Wireless Networks

  • Li, Yayan;Liu, Kai;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2636-2656
    • /
    • 2013
  • To improve the cooperative efficiency of node cooperation and multiple access performance for multihop wireless networks, a priority-differentiated cooperative medium access control protocol with contention resolution (CRP-CMAC) is proposed. In the protocol, the helper selection process is divided into the priority differentiation phase and the contention resolution phase for the helpers with the same priority. A higher priority helper can choose an earlier minislot in the priority differentiation phase to send a busy tone. As a result, the protocol promptly selects all the highest priority helpers. The contention resolution phase of the same priority helpers consists of k round contention resolution procedures. The helpers that had sent the first busy tone and are now sending the longest busy tone can continue to the next round, and then the other helpers that sense the busy tone withdraw from the contention. Therefore, it can select the unique best helper from the highest priority helpers with high probability. A packet piggyback mechanism is also adopted to make the high data rate helper with packet to send transmit its data packets to its recipient without reservation. It can significantly decrease the reservation overhead and effectively improve the cooperation efficiency and channel utilization. Simulation results show that the maximum throughput of CRP-CMAC is 74%, 36.1% and 15% higher than those of the 802.11 DCF, CoopMACA and 2rcMAC protocols in a wireless local area network (WLAN) environment, and 82.6%, 37.6% and 46.3% higher in an ad hoc network environment, respectively.

Multiple Rotating Priority Queue Scheduler to Meet Variable Delay Requriment in Real-Time Communication (실시간 통신에서 가변 지연을 만족하기 위한 Multiple Rotating Priority Queue Scheduler)

  • Hur, Kwon;Kim, Myung-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2543-2554
    • /
    • 2000
  • Packet schedulers for real-time communication must provide bounded delay and efficient use of network resources such as bandwidth, buffers and so on. In order to satisfy them, a large number of packet scheduling methods have been proposed. Among packet scheduling methods, an EDF (Earliest Deadline First) scheduling is the optimal one for a bounded delay service. A disadvantage of EDF scheduling is that queued packets must be sorted according to their deadlines, requiring a search operation whenever a new packet arrives at the scheduler. Although an RPQ (Rotating Priority Queue) scheduler, requiring large size of buffers, does not use such operation, it can closely approximate the schedulability of an EDF scheduler. To overcome the buffer size problem of an RPQ scheduler, this paper proposes a new scheduler named MRPQ (Multiple Rotating Priority Queue). In a MRPQ scheduler, there are several layers with a set of Queues. In a layer, Queues are configured by using a new strategy named block Queue. A MRPQ scheduler needs nearly half of buffer size required in an RPQ scheduler and produces schedulability as good as an RPQ scheduler.

  • PDF