• Title/Summary/Keyword: packaging system

Search Result 919, Processing Time 0.026 seconds

Strengthening Food Security through Food Quality Improvement - Focus on Grain Quality and Self-Sufficiency Rate

  • Meera Kweon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.10-10
    • /
    • 2022
  • The concern about food security is rising as the unstable situation of food supply and demand due to the Covid-19 pandemic, climate change, and turbulent political situation. Korea's global food security index (GFSI), analyzed by the Economist Group, is considered good, but the level continuously decreases in comparing food security levels by country. In particular, Korea is highly dependent on food imports, and food and grain self-sufficiency rates continuously decrease. Therefore, increasing those rates to strengthen food security is urgent. Among the major grains, the self-sufficiency of wheat, com, and soybeans, except rice, is relatively low. Unlike the decrease in the annual rice consumption, the annual wheat consumption has been continuously maintained or increased, which is required public-private efforts to increase the self-sufficiency rate of wheat. Applying the government's policies implemented to increase the self-sufficiency rate of rice in the past will help increase the self-sufficiency rate of wheat. In other words, expanding wheat production and infrastructure, stabilizing supply and demand, and establishing a distribution system can be applied. However, the processing capability of wheat and rice is different, which is necessary to improve wheat quality and processing technology to produce consumer-preferred wheat-based products. The wheat and flour quality can be improved through breeding, cultivation, post-harvest management, and milling. In addition, research on formulation, processes, packaging, and storage to improve the quality of wheat-based products should be done continuously. Overall, food security could be strengthened by expanding wheat production and consumption, improving wheat quality, and increasing wheat self-sufficiency.

  • PDF

Method for simultaneous analysis of bisphenols and phthalates in corn oil via liquid chromatography-tandem mass spectrometry

  • Min-Chul Shin;Hee-Jin Jeong;Seoung-Min Lee;Jong-Su Seo;Jong-Hwan Kim
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.271-279
    • /
    • 2024
  • Bisphenols and phthalates are endocrine-disrupting chemicals that are commonly used in packaging and as plasticizers. However, they pose health risks through ingestion, inhalation, and dermal contact. Accurate analysis of these pollutants is challenging owing to their low concentration and their presence in complex oil matrices. Therefore, they require efficient extraction and detection methods. In this study, an analytical method for the simultaneous quantification of bisphenols and phthalates in corn oil is developed. The dynamic multiple reaction monitoring mode of liquid chromatography-tandem mass spectrometry is used according to the different polarities of bisphenols and phthalates. The method is validated by assessing system suitability, linearity, accuracy, precision, homogeneity, and stability. The determination coefficients are higher than 0.99, which is acceptable. The percentage recovery and coefficient of variation of the accuracy and precision confirm that this analytical method is capable of simultaneously quantifying bisphenols and phthalates in corn oil. The bisphenols and phthalates in the formulations and pretreatment samples are stable for 7 d at room temperature and 24 h in an auto-sampler. Therefore, this validated analytical method is effective for the simultaneous quantification of bisphenols and phthalates in oils.

A Study on Characteristics Analysis of Multichannel Filter Module for Near-infrared Fluorescence Imaging (근적외선 형광 이미징 영상 구현을 위한 다채널 필터 모듈 특성분석 연구)

  • Choi, Jinsoo;Cho, Sang Uk;Kim, Doo-In;Lee, Hak-Guen;Choi, Hak Soo;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, development of multichannel filter module and characteristic evaluation for bio imaging were studied. The filter module was fabricated in order to realize near infrared fluorescence imaging of 700 nm and 800 nm wavelength ranges, and contrast imaging analysis for characteristic evaluation of the filter module was studied through signal to back ground ratio (SBR), controlled by parameters such as magnification, exposure, gain. Furthermore, phantoms, which are biomimetic tissue with equal optical properties of kidney and liver, were fabricated to study characteristics of both filter module depending on thickness and exposure amount of light source for bio imaging analysis. The fabricated filter module has more than 4 of SBR difference despite changes of magnification, exposure, gain, and in the case of the kidney phantom and the liver phantom, contrast imaging of more than 4 of SBR was confirmed on 50 mA, 60 mA exposure amount of light source respectively.

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.

Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN (p-type GaN의 Activation을 통한 광전기화학적 특성 향상)

  • Bang, Seung Wan;Kim, Haseong;Bae, Hyojung;Ju, Jin-Woo;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.59-63
    • /
    • 2017
  • The n-type GaN semiconductor has excellent properties as a photoelectrode, but it has disadvantage that its reliability is deteriorated due to the photocorrosion because the oxygen reaction occurs on the surface. For this reason, there are fundamental attempts to avoid photocorrosion reaction of GaN surfaces by using the p-type GaN as a photoelectrode where hydrogen generation reaction occurs on the surface. However, p-type GaN has a problem of low efficiency because of its high resistivity and low hole mobility. In this study, we try to improve the photocurrent efficiency by activation process for the p-type GaN. The p-type GaN was annealed for 1 min. at $500^{\circ}C$ in $N_2$ atmosphere. Hall effect measurement system was used for the electrical properties and potentiostat (PARSTAT4000) was used to measure the photoelectrochemical (PEC) characteristics. Consequently, the photocurrent density was improved more than 1.5 times by improving the activation process for the p-type GaN. Also, its reliability was maintained for 3 hours.

Research on Fabrication of Silicon Lens for Optical Communication by Photolithography Process (포토리소그래피를 통한 광통신용 실리콘 렌즈 제작 및 특성 연구)

  • Park, Junseong;Lee, Daejang;Rho, Hokyun;Kim, Sunggeun;Heo, Jaeyeong;Ryu, Sangwan;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.35-39
    • /
    • 2018
  • In order to improve the coupling efficiency, a collimator lens that collects the light emitted from the laser diode at a wide angle to the core of the optical fiber is essential. Glass mold method using a mold is widely used as a collimator lens currently used. Although this method is inexpensive to produce, it is difficult to form precisely and quality problems such as spherical aberration. In this study, the precision of surface processing was improved by replacing the existing glass mold method with the semiconductor process, and the material of the lens was changed to silicon suitable for the semiconductor process. The semiconductor process consists of a photolithography process using PR and a dry etching process using plasma. The optical coupling efficiency was measured using an ultra-precision alignment system for the evaluation of the optical characteristics of the silicon lens. As a result, the optical coupling efficiency was 50% when the lens diameter was $220{\mu}m$, and the optical coupling property was 5% or less with respect to the maximum optical coupling efficiency in the lens diameter range of $210-240{\mu}m$.

The study on Installation Areas of Permeable Pavement for Stormwater Control (우수유출 저감을 위한 투수성 포장의 설치 면적에 관한 연구)

  • Jang, Young-su;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.104-109
    • /
    • 2017
  • The flooding and deterioration of water quality caused by urbanization and climate change are becoming more serious. In order to respond to this, studies on low impact development (LID) technology, which is designed to restore the hydrological system of the urban basin to its natural state, have been actively pursued all over the world, The announcement of the low carbon green growth law, hydrophilic area special law, etc., highlights the importance of technology such as the LID method. However, whereas various developments have been made in relation to the current LID element technology, there has been little research designed to verify its effectiveness. In this study, we analyzed the optimum spatial distribution of pitcher fire pitcher packing in parking lots using the K - LIDM model to verify the effectiveness of the low impact development (LID) method in the early stages. Using the eight package scenario and the three rain intensity scenarios, it was found that the lower 40% pitcher packaging results in an approximately 90% spill reduction effect, as in the case of the whole pitcher's package. The confirmation of these analyses and experimental verification is expected to ensure that the actual pitcher packaging will be used as a basis for arranging LID facilities such as urban planning and housing development in the future.

Correlation between Interfacial Reaction and Brittle Fracture Found in Electroless Ni(P) Metallization (계면 화학반응과 무전해 니켈 금속층에서 나타나는 취성파괴와의 연관성에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.41-46
    • /
    • 2005
  • A systematic investigation of shear testing was conducted to find a relationship between Ni-Sn intermetallic spatting and the brittle fracture observed in electroless Ni(P)/solder interconnection. Brittle fracture was found in the solder joints made of Sn-3.5Ag, while only ductile fracture was observed in a Cu-containing solder (Sn-3.0Ag-0.5Cu). For Sn-3.0Ag-0.5Cu joints, $(Ni,Cu)_3Sn_4$ and/or $(Cu,Ni)_6Sn_5$ compound were formed at the interface without spatting from the Ni(P) film. For Sn-3.5Ag, $Ni_3Sn_4$ compound was formed and brittle fracture occurred in solder pads where $Ni_3Sn_4$ had spalled. From the analysis of fractured surfaces, it was found that the brittle fracture occurs through the $Ni_3SnP$ layer formed between $Ni_3Sn_4$ intermetallic layer and the Ni(P) film. Since the $Ni_3SnP$ layer is getting thicker during/ after $Ni_3Sn_4$ spatting, suppression of $Ni_3Sn_4$ spatting is crucial to ensure the reliability of Ni(P)/solder system.

  • PDF

Characterization of a Micro Power Generator using a Fabricated Square Coil of 4 Layers and Nd Magnet (PCB 4층 사각코일과 Nd 자석을 이용한 초소형발전기의 특성)

  • Lee, Dong-Ho;Kim, Seong-Il;Lee, Yoon-Pyo;Chang, Young-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.57-61
    • /
    • 2007
  • We designed and fabricated square coils of 4 layered structure on a PCB board. The size of the coils were $1{\times}1cm^2\;and\;$2{\times}2cm^2$. The line width of the fabricated coils was $100{\mu}m$. By reciprocating a magnet on the surface of a fabricated square coil which is composed of 4 layers, an alternating output voltage was obtained. We changed the vibrational frequency from 0.5 to 7 Hz. The generated voltages were 62 mV at $1{\times}1cm^2$ and 245 mV at $2{\times}2cm^2$ when 5.5 Hz frequency. We rectified and stepped up the output voltage using a quadrupler circuit and $2{\times}2cm^2$ coil. Before using the step up circuit, the measured voltage was 320 mV at 7 Hz. After using the step up circuit, the measured voltage was 400 mV at 7 Hz.

  • PDF

Tin-Based Nanoparticles Prepared by a Wet Chemical Synthesis using Green Reducing and Capping Agents (화학적 습식 합성법에서 친환경 슈거 환원제 및 젤라틴 캡핑제에 의한 주석계 나노입자의 제조)

  • Chee, Sang-Soo;Yun, Young-En;You, Eun-Sun;Park, Sang-Hyun;Park, Sung-Young;Lee, Seok-Hee;Park, In-Seon;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • In the synthesis of nanoparticles (NPs) via wet chemical reduction using tin(II) acetate precursor, the effects of green reducing agents (sugar) and a capping agent (gelatin) on the formation of NPs were analyzed as functions of synthesis conditions and time. When glucose was used as the reducing agent, it was observed that irregular chainlike shapes, aggregates of NPs, were formed during the synthesis at $70-110^{\circ}C$. The NPs were determined as $SnO_2$ from the fast Fourier transform (FFT) pattern. In the synthesis at $110^{\circ}C$ by using sucrose, fine spherical NPs of ~10 nm in diameter were formed after the synthesis time of 3 h. As the time increased to 9 h, the chainlike NP aggregates besides irregularly aggregated spherical NPs were also formed locally. However, the chainlike NP aggregates were only observed when the synthesis was conducted at $130^{\circ}C$. The spherical NPs and chainlike NP aggregates were analyzed to be pure Sn and $SnO_2$, respectively.