DOI QR코드

DOI QR Code

Tin-Based Nanoparticles Prepared by a Wet Chemical Synthesis using Green Reducing and Capping Agents

화학적 습식 합성법에서 친환경 슈거 환원제 및 젤라틴 캡핑제에 의한 주석계 나노입자의 제조

  • Chee, Sang-Soo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yun, Young-En (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • You, Eun-Sun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Sang-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Sung-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Seok-Hee (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, In-Seon (Department of Mechanical System Engineering, University of Incheon) ;
  • Lee, Jong-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 지상수 (서울과학기술대학교 신소재공학과) ;
  • 윤영은 (서울과학기술대학교 신소재공학과) ;
  • 유은선 (서울과학기술대학교 신소재공학과) ;
  • 박상현 (서울과학기술대학교 신소재공학과) ;
  • 박성영 (서울과학기술대학교 신소재공학과) ;
  • 이석희 (서울과학기술대학교 신소재공학과) ;
  • 박인선 (인천대학교 기계시스템공학부) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2012.09.13
  • Accepted : 2012.11.05
  • Published : 2012.12.30

Abstract

In the synthesis of nanoparticles (NPs) via wet chemical reduction using tin(II) acetate precursor, the effects of green reducing agents (sugar) and a capping agent (gelatin) on the formation of NPs were analyzed as functions of synthesis conditions and time. When glucose was used as the reducing agent, it was observed that irregular chainlike shapes, aggregates of NPs, were formed during the synthesis at $70-110^{\circ}C$. The NPs were determined as $SnO_2$ from the fast Fourier transform (FFT) pattern. In the synthesis at $110^{\circ}C$ by using sucrose, fine spherical NPs of ~10 nm in diameter were formed after the synthesis time of 3 h. As the time increased to 9 h, the chainlike NP aggregates besides irregularly aggregated spherical NPs were also formed locally. However, the chainlike NP aggregates were only observed when the synthesis was conducted at $130^{\circ}C$. The spherical NPs and chainlike NP aggregates were analyzed to be pure Sn and $SnO_2$, respectively.

Tin(II) acetate 전구체를 사용한 습식 환원 합성법으로 나노입자를 제조하는 공정에서 친환경 환원제(슈거) 및 캡핑제(젤라틴)를 사용하여 합성 조건 및 합성 시간에 따른 주석 나노입자의 합성 특성을 분석하였다. 글루코스 환원제를 사용하여 $70-110^{\circ}C$의 온도에서 합성 시 불규칙한 사슬 형태로 군집체를 이루면서 배열된 환원 나노입자들이 관찰되었다. FFT 패턴 분석으로부터 이러한 나노입자들은 $SnO_2$ 상으로 분석되었다. 수크로오스 환원제로 사용하여 $110^{\circ}C$에서 합성을 실시한 경우에서는 3시간의 합성 시간에서 평균 약 10 nm급의 미세한 구형 나노입자들을 형성시킬 수 있었으나, 합성 시간을 9시간으로 증가시킨 경우에서는 불규칙하게 뭉친 나노입자들 외에도 사슬 형태의 나노입자 군집체들이 국부적으로 형성되는 거동이 관찰되었다. 그러나 $130^{\circ}C$ 합성 시에는 사슬 형태의 나노입자 군집체들만을 관찰할 수 있었다. 그 결과 구형의 나노입자는 순수 Sn 상으로, 사슬 형태 나노입자 군집체들은 $SnO_2$ 상으로 각각 분석되었다.

Keywords

References

  1. Wlkipedia, Wlikipedia Foundation. Inc. Sep.(2012) from http:// en.wikipedia.org/wiki/Tin
  2. J. -G. Lee, K. -S. Kim, J. -W. Yoon and S. -B. Jung, "Analysis of Void Effects on Mechanical Property of BGA Solder Joint", J. Microelectron. Packag. Soc., 18(4), 1 (2010).
  3. H. Jiang, K. Moon, H. Dong, F. Hua and C. P. Wong, "Size- Dependent Melting Properties of Tin Nanoparticles", Chem. Phys. Lett., 429, 492 (2006). https://doi.org/10.1016/j.cplett.2006.08.027
  4. L. -Y. Hsiao and J. -G. Duh, "Revealing the Nucleation and Growth Mechanism of a Novel Solder Developed from Sn- 3.5Ag-0.5Cu Nanoparticles by a Chemical Reduction Method", J. Electron. Mater., 35(9), 1755 (2006). https://doi.org/10.1007/s11664-006-0230-x
  5. H. Jiang, K. Moon, F. Hua and C. P. Wong, "Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders", Chem. Mater., 19(18), 4482 (2007). https://doi.org/10.1021/cm0709976
  6. P. -C. Huang and J. -G. Duh, "Effects of Different Surfactant Additions and Treatments on the Chracteristics of Tin Nanosolder by Chemical Reduction Method", Proc. 58th Electronic Components and Technology Conference (ECTC), Orlando, 431, IEEE Componets Packaging and Manufacturing Technology Society (CPMT) (2008).
  7. H. Jiang, K. Moon and C. P. Wong, "Thi/Silver/Copper Alloy Nanoparticles Pastes for Low Temperature Lead-free Interconnect Application", Proc. 58th ECTC, Orlando, 1400, IEEE CPMT (2008).
  8. C. D. Zou, Y. L. Gao, B. Yang, X. Z. Xia, Q. J. Zhai, C. Andersson and J. Liu, "Nanoparticles of the Lead-Free Solder Alloy Sn-3.0Ag-0.5Cu with Large Melting Temperature Depression", J. Electron. Mater., 38(2), 351 (2009). https://doi.org/10.1007/s11664-008-0591-4
  9. Y. Gao, C. Zou, B. Yang, Q. Zhai, J. Liu, E. Zhuravlev and C. Schick, "Nanoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy", J. Alloys Compd., 484, 777 (2009). https://doi.org/10.1016/j.jallcom.2009.05.042
  10. C. D. Zou, Y. L. Gao, B. Yang, Q. J. Zhai, C. Andersson and J. Liu, "Melting Temperature Depression of Sn-0.4Co-0.7Cu Lead-Free Solder Nanoparticles", Solder. Surf. Mount Technol., 21(2), 9 (2009). https://doi.org/10.1108/09540910910947417
  11. C. Y. Lin, U. S. Mohanty and J. H. Chou, "Synthesis and Characterization of Sn-3.5Ag-XZn Alloy Nanoparticles by the Chemical Reduction Method", J. Alloys Compd., 472, 281 (2009). https://doi.org/10.1016/j.jallcom.2008.04.063
  12. C. Zou, Y. Gao, B. Yang and Q. Zhai, "Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder", J. Mater. Sci.: Mater. Electron., 21(9), 868 (2010). https://doi.org/10.1007/s10854-009-0009-y
  13. C. Y. Lin, U. S. Mohanty and J. H. Chou, "High Temperature Synthesis of Sn-3.5Ag-0.5Zn Alloy Nanoparticles by Chemical Reduction Method", J. Alloys Compd., 501(9), 204 (2010). https://doi.org/10.1016/j.jallcom.2010.04.111
  14. Y. H. Jo, J. C. Park, J. U. Bang, H. Song and H. M. Lee, "New Synthesis Approach for Low Temperature Bimetallic Nanoparticles: Size and Composition Controlled Sn-Cu Nanoparticles", J. Nanosci. Nanotechnol., 11(2), 1037 (2011). https://doi.org/10.1166/jnn.2011.3052
  15. Y. H. Jo, I. Jung, C. S. Choi, I. Kim and H. M. Lee, "Synthesis and Characterization of Low Temperature Sn Nanoparticles for the Fabrication of Highly Conductive Ink", Nanotechnology, 22, 225701 (2011). https://doi.org/10.1088/0957-4484/22/22/225701
  16. N. -I. Jang and J. -H. Lee, "Effect of PVP Molecular Weight on Size of Sn Nanoparticles Synthesized by Chemical Reduction", J. Microelectron. Packag. Soc., 18(4), 27 (2011).
  17. P. Raveendran, J. Fu and S. L. Wallen, "Completely Green Synthesis and Stabilization of Metal Nanoparticles", J. Am. Chem. Soc., 125, 13940 (2003). https://doi.org/10.1021/ja029267j
  18. S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath and T. Pal, "Sugar Assisted Evolution of Mono- and Bimetallic Nanoparticles", Colloid Surface A, 264, 133 (2005). https://doi.org/10.1016/j.colsurfa.2005.04.017
  19. P. Raveendran, J. Fu and S. L. Wallen, "A Simple and Green Method for the Synthesis of Au, Ag, and Au-Ag Alloy Nanoparticles", Green Chem., 8, 34 (2006). https://doi.org/10.1039/b512540e
  20. J. Liu, G. Qin, P. Raveendran and Y. Ikushima, "Facile Green Synthesis, Chracterization and Catalytic Function of ${\beta}$-D-Glucose-Stabilized Au Nanocrystals", Chem. Eur. J., 12, 2131 (2006). https://doi.org/10.1002/chem.200500925
  21. M. Darroudi, M. B. Ahmad, A. H. Abdullah and N. A. Ibrahim, "Green Synthesis and Characterization of Gelatin-Based Sugar-Reduced Silver Nanoparticles", Int. J. Nanomedicine, 6, 569 (2011).
  22. I. Pezron, M Djabourov and J Leblond, "Conformation of Gelatin Chains in Aqueous Solutions: 1. A Light and Small- Angle Neutron Scattering Study", Polymer, 32(17), 3201 (1991). https://doi.org/10.1016/0032-3861(91)90143-7
  23. S. Nayar and A. Sinha, "Systematic Evolution of a Porous Hydroxyapatite-Poly(Vinylalcohol)-Gelatin Composite", Colloid Surface B, 35(1), 29 (2004). https://doi.org/10.1016/j.colsurfb.2004.01.013
  24. M. Dressler, F. Dombrowski, U. Simon, J. Börnstein, V. D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar and M. Neumann, "Influence of Gelatin Coatings on Compressive Strength of Porous Hydroxyapatite Ceramics", J. Eur. Ceram. Soc., 31(4), 523 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.004
  25. S. -S. Chee and J. -H. Lee, "Effects of Process Parameters in Synthesizing Sn Nanoparticles via Chemical Reduction", Electron. Mater. Lett., 8(1), 53 (2011). https://doi.org/10.1007/s13391-011-0510-3