References
- Wlkipedia, Wlikipedia Foundation. Inc. Sep.(2012) from http:// en.wikipedia.org/wiki/Tin
- J. -G. Lee, K. -S. Kim, J. -W. Yoon and S. -B. Jung, "Analysis of Void Effects on Mechanical Property of BGA Solder Joint", J. Microelectron. Packag. Soc., 18(4), 1 (2010).
- H. Jiang, K. Moon, H. Dong, F. Hua and C. P. Wong, "Size- Dependent Melting Properties of Tin Nanoparticles", Chem. Phys. Lett., 429, 492 (2006). https://doi.org/10.1016/j.cplett.2006.08.027
- L. -Y. Hsiao and J. -G. Duh, "Revealing the Nucleation and Growth Mechanism of a Novel Solder Developed from Sn- 3.5Ag-0.5Cu Nanoparticles by a Chemical Reduction Method", J. Electron. Mater., 35(9), 1755 (2006). https://doi.org/10.1007/s11664-006-0230-x
- H. Jiang, K. Moon, F. Hua and C. P. Wong, "Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders", Chem. Mater., 19(18), 4482 (2007). https://doi.org/10.1021/cm0709976
- P. -C. Huang and J. -G. Duh, "Effects of Different Surfactant Additions and Treatments on the Chracteristics of Tin Nanosolder by Chemical Reduction Method", Proc. 58th Electronic Components and Technology Conference (ECTC), Orlando, 431, IEEE Componets Packaging and Manufacturing Technology Society (CPMT) (2008).
- H. Jiang, K. Moon and C. P. Wong, "Thi/Silver/Copper Alloy Nanoparticles Pastes for Low Temperature Lead-free Interconnect Application", Proc. 58th ECTC, Orlando, 1400, IEEE CPMT (2008).
- C. D. Zou, Y. L. Gao, B. Yang, X. Z. Xia, Q. J. Zhai, C. Andersson and J. Liu, "Nanoparticles of the Lead-Free Solder Alloy Sn-3.0Ag-0.5Cu with Large Melting Temperature Depression", J. Electron. Mater., 38(2), 351 (2009). https://doi.org/10.1007/s11664-008-0591-4
- Y. Gao, C. Zou, B. Yang, Q. Zhai, J. Liu, E. Zhuravlev and C. Schick, "Nanoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy", J. Alloys Compd., 484, 777 (2009). https://doi.org/10.1016/j.jallcom.2009.05.042
- C. D. Zou, Y. L. Gao, B. Yang, Q. J. Zhai, C. Andersson and J. Liu, "Melting Temperature Depression of Sn-0.4Co-0.7Cu Lead-Free Solder Nanoparticles", Solder. Surf. Mount Technol., 21(2), 9 (2009). https://doi.org/10.1108/09540910910947417
- C. Y. Lin, U. S. Mohanty and J. H. Chou, "Synthesis and Characterization of Sn-3.5Ag-XZn Alloy Nanoparticles by the Chemical Reduction Method", J. Alloys Compd., 472, 281 (2009). https://doi.org/10.1016/j.jallcom.2008.04.063
- C. Zou, Y. Gao, B. Yang and Q. Zhai, "Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder", J. Mater. Sci.: Mater. Electron., 21(9), 868 (2010). https://doi.org/10.1007/s10854-009-0009-y
- C. Y. Lin, U. S. Mohanty and J. H. Chou, "High Temperature Synthesis of Sn-3.5Ag-0.5Zn Alloy Nanoparticles by Chemical Reduction Method", J. Alloys Compd., 501(9), 204 (2010). https://doi.org/10.1016/j.jallcom.2010.04.111
- Y. H. Jo, J. C. Park, J. U. Bang, H. Song and H. M. Lee, "New Synthesis Approach for Low Temperature Bimetallic Nanoparticles: Size and Composition Controlled Sn-Cu Nanoparticles", J. Nanosci. Nanotechnol., 11(2), 1037 (2011). https://doi.org/10.1166/jnn.2011.3052
- Y. H. Jo, I. Jung, C. S. Choi, I. Kim and H. M. Lee, "Synthesis and Characterization of Low Temperature Sn Nanoparticles for the Fabrication of Highly Conductive Ink", Nanotechnology, 22, 225701 (2011). https://doi.org/10.1088/0957-4484/22/22/225701
- N. -I. Jang and J. -H. Lee, "Effect of PVP Molecular Weight on Size of Sn Nanoparticles Synthesized by Chemical Reduction", J. Microelectron. Packag. Soc., 18(4), 27 (2011).
- P. Raveendran, J. Fu and S. L. Wallen, "Completely Green Synthesis and Stabilization of Metal Nanoparticles", J. Am. Chem. Soc., 125, 13940 (2003). https://doi.org/10.1021/ja029267j
- S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath and T. Pal, "Sugar Assisted Evolution of Mono- and Bimetallic Nanoparticles", Colloid Surface A, 264, 133 (2005). https://doi.org/10.1016/j.colsurfa.2005.04.017
- P. Raveendran, J. Fu and S. L. Wallen, "A Simple and Green Method for the Synthesis of Au, Ag, and Au-Ag Alloy Nanoparticles", Green Chem., 8, 34 (2006). https://doi.org/10.1039/b512540e
-
J. Liu, G. Qin, P. Raveendran and Y. Ikushima, "Facile Green Synthesis, Chracterization and Catalytic Function of
${\beta}$ -D-Glucose-Stabilized Au Nanocrystals", Chem. Eur. J., 12, 2131 (2006). https://doi.org/10.1002/chem.200500925 - M. Darroudi, M. B. Ahmad, A. H. Abdullah and N. A. Ibrahim, "Green Synthesis and Characterization of Gelatin-Based Sugar-Reduced Silver Nanoparticles", Int. J. Nanomedicine, 6, 569 (2011).
- I. Pezron, M Djabourov and J Leblond, "Conformation of Gelatin Chains in Aqueous Solutions: 1. A Light and Small- Angle Neutron Scattering Study", Polymer, 32(17), 3201 (1991). https://doi.org/10.1016/0032-3861(91)90143-7
- S. Nayar and A. Sinha, "Systematic Evolution of a Porous Hydroxyapatite-Poly(Vinylalcohol)-Gelatin Composite", Colloid Surface B, 35(1), 29 (2004). https://doi.org/10.1016/j.colsurfb.2004.01.013
- M. Dressler, F. Dombrowski, U. Simon, J. Börnstein, V. D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar and M. Neumann, "Influence of Gelatin Coatings on Compressive Strength of Porous Hydroxyapatite Ceramics", J. Eur. Ceram. Soc., 31(4), 523 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.004
- S. -S. Chee and J. -H. Lee, "Effects of Process Parameters in Synthesizing Sn Nanoparticles via Chemical Reduction", Electron. Mater. Lett., 8(1), 53 (2011). https://doi.org/10.1007/s13391-011-0510-3