• Title/Summary/Keyword: packaging system

Search Result 919, Processing Time 0.024 seconds

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

Characterization of a Micro Power Generator using a Fabricated Electroplated Coil (전기도금 방법으로 제작한 코일을 이용한 초소형 발전기의 특성분석)

  • Lee, Dong-Ho;Kim, Seong-Il;Kim, Young-Hwan;Kim, Yong-Tae;Park, Min-Chul;Lee, Chang-Woo;Baek, Chang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.9-12
    • /
    • 2006
  • We have designed and fabricated micro power generators by electroplating which is important in MEMS(micro electro mechanical system) technique. We have electroplated MEMS coils on the glass substrates and have chosen one of these coils for experiments. The thickness, width, and length of the coil are $7{\mu}m,\;20{\mu}m$, and 1.6 m, respectively. We have analyzed the structure of MEMS coil by SEM. We have made a vibrating system for reproducible results in measurement. With reciprocating a magnet on the surface of a fabricated winding coil, the micro power generator produce an alternating voltage. We have changed the vibrational frequency from 0.5 Hz to 8 Hz. The generated voltage was 106 mV at 3 Hz and 198 mV at 6 Hz. We aim at the micro power generator which can change vibration energy to useful electric energy.

  • PDF

Evaluation of Egg Quality Traits in the Wholesale Market in Sri Lanka during the Storage Period

  • Jayasena, Dinesh D.;Cyril, Hewa W.;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.209-217
    • /
    • 2012
  • The objective of this study was to assess the external and internal quality traits of eggs in wholesale egg market in Colombo, Sri Lanka and the effect of storage period in egg quality traits in the same market after receiving the eggs. First, a total of 482 fresh eggs were randomly collected from the above market and external egg quality traits were determined and recorded according to the definitions given in the Specification for Chicken Egg SLS 959:1992. After that, a total of 288 fresh eggs were randomly collected and various external and internal egg quality traits were measured and recorded according to the standard procedures over a storage period of 1, 3 and 5 d after receiving the fresh eggs to the wholesale market. Information about the shops was also collected using a pretested questionnaire. Using the recorded data, shape index, Haugh unit, albumen index and yolk index were calculated for each egg. Average weight, width, length and shape index of the eggs in the sample was 59.96 g, 4.33 cm, 5.78 cm and 75.03, respectively. Average shape index value was much closer to the standard value of 74. From the total sample 80.5% eggs had a normal and sound shape. However only 60.37% of the eggs are in the desirable quality range specified in SLS 959:1992, when the overall shell quality of the sample is considered based on shell cleanliness, defects and shape. The results of the current study indicated that eggs had significant (p<0.05) deterioration of all internal quality parameters tested with increasing storage time. However the effect was not significant (p>0.05) between the storage periods of 3 and 5 d after receiving eggs except for yolk color and yolk height. Desirable category of eggs had reduced and rejections had increased with the storage period. Main problems associated with the particular market were less space availability, higher percentages of dirty eggs, unavailability of proper packaging materials, no standard packaging system for eggs, and not implementing a standard grading system for eggs. Therefore the results of this study suggest that proper egg handling and storage conditions such as low temperature storage may be implemented to increase the proportion of desirable quality eggs in the above market.

Temperature Effect on the Productivity of Recombinant Protein in a Lysis and DNA packaging-deficient and Temperature-sensitive Bacteriophage $\lambda$System (용균과 DNA 패키징 유전자가 결핍된 온도 민감성 박테리오 파아지 람다 시스템에서 재조합 단백질 생산성에 미치는 온도의 영향)

  • Oh, Jeong-Seok;Park, Tai-Hyun
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.112-115
    • /
    • 2005
  • E. coli in combination with bacteriophage $\lambda$ was used to overcome the intrinsic plasmid instability that is frequently found in recombinant fermentation especially in long-term operation. In order to enhance the stability and productivity, the bacteriophage ${\lambda}NM1070$ was used in this study. It is a $\lambda$ mutant, which is deficient in the synthesis of protein related to DNA packaging and cell lysis. The ${\lambda}NM1070$ is also a temperature-sensitive mutant. To optimize the production of recombinant protein in this temperature-sensitive system, the temperature effects on growth and cloned gene expression were investigated for stable and efficient recombinant gene expression. The induction to the lytic state was not complete at $36^{\circ}C$ while the temperature above $40^{\circ}C$ induced the lytic state completely. However, the productivity was decreased at $42^{\circ}C$ by temperature inhibition. The L-free cell concentration increased with the increase of temperature until $40^{\circ}C$. In conclusion, ${\lambda}NM1070$ has the optimal temperature at $38^{\circ}C$ for stability and at $40^{\circ}C$ for expression.

Effect of $N_2+H_2$ Forming Gas Annealing on the Interfacial Bonding Strength of Cu-Cu thermo-compression Bonded Interfaces (Cu-Cu 열압착 웨이퍼 접합부의 계면접합강도에 미치는 $N_2+H_2$ 분위기 열처리의 영향)

  • Jang, Eun-Jung;Kim, Jae-Won;Kim, Bioh;Matthias, Thorsten;Hyun, Seung-Min;Lee, Hak-Joo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • Cu-Cu thermo-compression bonding process was successfully developed as functions of the $N_2+H_2$ forming gas annealing conditions before and after bonding step in order to find the low temperature bonding conditions of 3-D integrated technology where the quantitative interfacial adhesion energy was measured by 4-point bending test. While the pre-annealing with $N_2+H_2$ gas below $200^{\circ}C$ is not effective to improve the interfacial adhesion energy at bonding temperature of $300^{\circ}C$, the interfacial adhesion energy increased over 3 times due to post-annealing over $250^{\circ}C$ after bonding at $300^{\circ}C$, which is ascribed to the effective removal of native surface oxide after post-annealing treatment.

  • PDF

Manufacturing of Metal Micro-wire Interconnection on Submillimeter Diameter Catheter (서브-밀리미터 직경의 카테터 표면 위 금속 마이크로 와이어 접착 공정)

  • Jo, Woosung;Seo, Jeongmin;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 2017
  • In this paper, we investigated a manufacturing process of metal micro-wire interconnection on submillimeter diameter catheter. Over the years, flexible electronic researches have focused on flexible plane polymer substrate and micro electrode manufacturing on its surface. However, a curved polymer substrate, such as catheter, is very important for medical application. Among many catheters, importance of submillimeter diameter steerable catheter is increasing to resolve the several limitations of neurosurgery. Steering actuators have been researched for realizing the steerable catheter, but there is no research about practical wiring for driving these actuators. Therefore we developed a new manufacturing process for metal micro-wire interconnection on submillimeter diameter catheter. We designed custom jigs for alignment of the metal micro-wires on the submillimeter diameter catheter. An UV curing system and commercial products were used to reduce the manufacturing time and cost; Au micro-wire, UV curable epoxy, UV lamp, and submillimeter diameter catheter. The assembled catheter was characterized by using an optical microscope, a resistance meter, and a universal testing machine.

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

p-Type Activation of AlGaN-based UV-C Light-Emitting Diodes by Hydrogen Removal using Electrochemical Potentiostatic Activation (전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화)

  • Lee, Koh Eun;Choi, Rak Jun;Kumar, Chandra Mohan Manoj;Kang, Hyunwoong;Cho, Jaehee;Lee, June Key
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.85-89
    • /
    • 2021
  • AlGaN-based UV-C light-emitting diodes (LEDs) were applied for p-type activation by electrochemical potentiostatic activation (EPA). The p-type activation efficiency was increased by removing hydrogen atoms through EPA treatment using a neutral Mg-H complex that causes high resistance and low conductivity. A neutral Mg-H complex is decomposed into Mg- and H+ depending on the key parameters of solution, voltage, and time. The improved hole carrier concentration was confirmed by secondary ion mass spectroscopy (SIMS) analysis. This mechanism eventually improved the internal quantum efficiency (IQE), the light extraction efficiency, the leakage current value in the reverse current region, and junction temperature, resulting in better UV-C LED lifetime. For systematic analysis, SIMS, Etamax IQE system, integrating sphere, and current-voltage measurement system were used, and the results were compared with the existing N2-annealing method.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

Magnetic Induction Soldering Process for Mounting Electronic Components on Low Heat Resistance Substrate Materials (저 내열 기판소재 전자부품 실장을 위한 자기유도 솔더링)

  • Youngdo Kim;Jungsik Choi;Min-Su Kim;Dongjin Kim;Yong-Ho Ko;Myung-Jin Chung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • Due to the miniaturization and multifunctionality of electronic devices, a surface mount technology in the form of molded interconnect devices (MID), which directly forms electrodes and circuits on the plastic injection parts and mounts components and parts on them, is being introduced to overcome the limitations in the mounting area of electronic components. However, when using plastic injection parts with low thermal stability, there are difficulties in mounting components through the conventional reflow process. In this study, we developed a process that utilizes induction heating, which can selectively heat specific areas or materials, to melt solder and mount components without causing any thermal damage to the plastic. We designed the shape of an induction heating Cu coil that can concentrate the magnetic flux on the area to be heated, and verified the concentration of the magnetic flux and the degree of heating on the pad part through finite element method (FEM). LEDs, capacitors, resistors, and connectors were mounted on a polycarbonate substrate using induction heating to verify the mounting process, and their functionality was confirmed. We presented the applicability of a selective heating process through magnetic induction that can overcome the limitations of the reflow method.