• Title/Summary/Keyword: packaging in future society

Search Result 129, Processing Time 0.024 seconds

Techniques to Extend the Storage Period of Cheese - A Review of the Current Status and Future Prospects (치즈의 저장 기간 증가에 이용되는 다양한 기술에 관한 현황과 전망: 총설)

  • Chon, Jung-Whan;Kim, Tae-Jin;Seo, Kun-Ho;Youn, Hye-Young;Kim, Hyeon-Jin;Her, Jekang;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The safety and storage periods of various foods, including dairy products, can be affected by a variety of internal and external factors. Therefore, all foods have a risk of deterioration after storage for a certain period of time for many different reasons. Among dairy products, cheese is enriched in necessary nutrients; however, it can also easily undergo physical, chemical, and biochemical changes under various conditions. Therefore, the storage period of cheese is an important issue. If various factors that can affect the safety and storage period of cheese can be controlled, the safety of cheese can be preserved and its storage period extended. This review of the literature published on the issue summarizes various state-of-the-art technologies currently used to extend the storage period of cheese without affecting its quality. This basic data will inform future research concerning the storage period of various cheeses.

Fabrication and Reliability Test of Device Embedded Flexible Module (디바이스 내장형 플렉시블 전자 모듈 제조 및 신뢰성 평가)

  • Kim, Dae Gon;Hong, Sung Taik;Kim, Deok Heung;Hong, Won Sik;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.84-88
    • /
    • 2013
  • These days embedded technology may be the most significant development in the electronics industry. The study focused on the development of active device embedding using flexible printed circuit in view of process and materials. The authors fabricated 30um thickness Si chip without any crack, chipping defects with a dicing before grinding process. In order to embed chips into flexible PCB, the chip pads on a chip are connected to bonding pad on flexible PCB using an ACF film. After packaging, all sample were tested by the O/S test and carried out the reliability test. All samples passed environmental reliability test. In the future, this technology will be applied to the wearable electronics and flexible display in the variety of electronics product.

Development of Small Flat Plate Type Cooling Device (소형의 평판형 냉각장치 개발)

  • Moon, Seok-Hwan;Hwang, Gunn;Kang, Seung-Youl;Cho, Kyoung-Ik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.614-619
    • /
    • 2010
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of a slimness of the devices, so it is not easy to find the optimal thermal management solution for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint of the applications. In the present study, the silicon flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. The normal isothermal characteristics created by vapor-liquid phase change was confirmed through the experimental study. The cooling device with 70 mm of total length showed 6.8 W of the heat transfer rate within the range of $4{\sim}5^{\circ}C/W$ of thermal resistance. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of the silicon and glass cooling device.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

The study on Installation Areas of Permeable Pavement for Stormwater Control (우수유출 저감을 위한 투수성 포장의 설치 면적에 관한 연구)

  • Jang, Young-su;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.104-109
    • /
    • 2017
  • The flooding and deterioration of water quality caused by urbanization and climate change are becoming more serious. In order to respond to this, studies on low impact development (LID) technology, which is designed to restore the hydrological system of the urban basin to its natural state, have been actively pursued all over the world, The announcement of the low carbon green growth law, hydrophilic area special law, etc., highlights the importance of technology such as the LID method. However, whereas various developments have been made in relation to the current LID element technology, there has been little research designed to verify its effectiveness. In this study, we analyzed the optimum spatial distribution of pitcher fire pitcher packing in parking lots using the K - LIDM model to verify the effectiveness of the low impact development (LID) method in the early stages. Using the eight package scenario and the three rain intensity scenarios, it was found that the lower 40% pitcher packaging results in an approximately 90% spill reduction effect, as in the case of the whole pitcher's package. The confirmation of these analyses and experimental verification is expected to ensure that the actual pitcher packaging will be used as a basis for arranging LID facilities such as urban planning and housing development in the future.

Battery Module Bonding Technology for Electric Vehicles (전기자동차 배터리 모듈 접합 기술 리뷰)

  • Junghwan Bang;Shin-Il Kim;Yun-Chan Kim;Dong-Yurl Yu;Dongjin Kim;Tae-Ik Lee;Min-Su Kim;Jiyong Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

Study on Structural Changes and Electromagnetic Interference Shielding Properties of Ti-based MXene Materials by Heat Treatment (열처리에 의한 Ti 기반 MXene 소재의 구조 변화와 전자파 간섭 차폐 특성에 관한 연구)

  • Han Xue;Ji Soo Kyoung;Yun Sung Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.111-118
    • /
    • 2023
  • MXene, a two-dimensional transition metal carbide or nitride, has recently attracted much attention as a lightweight and flexible electromagnetic shielding material due to its high electrical conductivity, good mechanical strength and thermal stability. In particular, the Ti-based MXene, Ti3C2Tx and Ti2CTx are reported to have the best electrical conductivity and electromagnetic shielding properties in the vast MXene family. Therefore, in this study, Ti3C2Tx and Ti2CTx films were prepared by vacuum filtration using Ti3C2Tx and Ti2CTx dispersions synthesized by interlayer metal etching and centrifugation of Ti3AlC2 and Ti2AlC. The electrical conductivity and electromagnetic shielding efficiency of the films were measured after heat treatment at high temperature. Then, X-ray diffraction and photoelectron spectroscopy were performed to analyze the structural changes of Ti3C2Tx and Ti2CTx films after heat treatment and their effects on electromagnetic shielding. Based on the results of this study, we propose an optimal structure for an ultra-thin, lightweight, and high performance MXene-based electromagnetic shielding film for future applications in small and wearable electronics.

Ten-Year Change in Vegan Fashion and Beauty Industries in Korean Society -A Corpus Analysis- (코퍼스를 활용한 한국 사회 10년 비건 패션, 뷰티 변화 분석)

  • Somi Kang;Hayeun Jang;Ju Yeun Jang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.4
    • /
    • pp.625-645
    • /
    • 2023
  • This study examined newspaper articles from 2012 to the first quarter of 2021 to explore how interest in and response to veganism have evolved in the fashion and beauty industries over the past decade. By analyzing keywords and word correlations, we discovered a steady increase in veganism-related articles in both English- and Korean-language newspapers published in Korea, especially since 2019. Since 2012, consumer interest in vegan fashion materials has grown, with fashion and beauty emerging in 2018 as significant vegan-related keywords. As a result, brands have adopted vegan certification systems and introduced vegan product lines, and new vegan brands have emerged. Since 2020, companies have been promoting environmental, social, and governance (ESG) management practices and working toward eco-management that reflects vegan trends in all areas, such as cruelty-free product/packaging materials, brands, policies, and services. It is also notable that fashion/beauty consumers have been more actively starting to adopt eco-friendly lifestyles and participate in vegan-related movements since that time. Our findings offer important insights into the evolution of veganism in Korea and can help researchers and industry practitioners to develop future business strategies in the vegan fashion and beauty industries.

Study on Influencing Factors of Adhesive Strength for Polymer Coating on Metal Adherend by Dolly Test (돌리테스트로 고분자 코팅층과 금속 피착재의 접착강도 측정시 영향인자에 대한 연구)

  • Baeg, Ju-Hwan;Park, Hyun;Lee, Sung In;Ha, Yungeun;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • The demand and importance of adhesives and paint coatings applied to solid surfaces such as metals, ceramics, and plastics are increasing. In this study, the influencing factors on the adhesive strength between the polymer coating and the metal adherend were investigated by Dolly test when the adhesive or the paint coating was applied on the metal adherend. Two-component epoxy adhesive was used as the adhesive, and EH2350, a two-component epoxy paint for anti-corrosion, was used as the paint. Especially, the effect of adherend metals(Al, Fe, STS, Cu, Zn), surface roughness and surface contamination(tap water, salt water) on adhesive strength was studied as influencing factors. The adhesive strength between adhesive and adherend was different when the type of metal adherend was different even when the same adhesive was used. It was found that spray water cleaning was necessary before the paint coating process on the surface of the oxide contaminated adherend with tap water or salt water. As a result of this study, it was confirmed that Dolly test can be widely used in the future to measure adhesive strength between paint coating and adherend.

Temperature Reduction Effect According to Light Transmittance of Urban Street Trees - Focused on Seocho-gu in Seoul - (도시 내 가로수의 광선투과량에 따른 온도저감 효과 - 서울시 서초구를 중심으로 -)

  • Kim, Eun-Bum;Kim, Nam-Choon;Shin, Ji-Hoon;Song, Won-Kyeong;Kim, Do-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.45-54
    • /
    • 2017
  • With rapid urbanization and reckless urban development in the 21st century, the urban environment has gradually gotten worse, and urban heat island effect has been dramatically intensified. Thus, the importance of street greenery that can mitigate the urban heat island effect has further been highlighted. In this regard, this study was aimed at selecting suitable plant species for street greenery to reduce the urban heat island effect. Towards this end, five roads located in Seocho-gu, Seoul were selected as study sites, and plant species composition and difference of surface temperature were compared and analyzed in relation to the light transmittance. The street with the greatest temperature difference is Bangbae-ro(Platanus occidentalis). On the other hand, the road with the lowest temperature difference is Nambusunhwan-doro(Metasequoia Glyptostroboides). The effect of temperature reduction was found to be associated with light transmittance.Bangbae-ro(Platanus occidentalis) with the lowest light transmittance showed the highest temperature difference and Nambusunhwan-doro(Metasequoia Glyptostroboides) with the highest light transmittance showed the lowest temperature difference. It is analyzed that there are most differences in temperature when the amount of lights coming in between the crown is small. The temperature reduction effect can be obtained by planting deciduous broad-leaved trees. Also species with dense crown and broad width of crown will be able to maximize the effect of temperature reduction. In future studies, it will be necessary to expand the other species of trees in the street, and analyze the germicidal trees and shrubs as well as the differences in the packaging materials.