• Title/Summary/Keyword: pH-Responsive

Search Result 88, Processing Time 0.027 seconds

The Formation of Metal Nanoparticles in pH-responsive Block Copolymers and Hydrogels

  • Anastasiadis, S.H.;Vamvakaki, M.;Palioura, D.;Spyros, A.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.85-85
    • /
    • 2006
  • The micellization behavior and the metal-nanoparticle formation in PDEAEMA-b-PHEGMA double hydrophilic block copolymers are investigated. The hydrophobic PDEAEMA block is pH-sensitive: at low pH it can be protonated and it becomes hydrophilic, leading to molecular solubility, whereas at higher pH micelles are formed; the behavior is studied by DLS, NMR and AFM. In these micellar nanoreactors, metal nanorystals nucleate and grow upon reduction with sizes in the range of a few nm's as observed by TEM and XRD. Similarly, metal nanocrystals can be formed within pH-sensitive microgels (${\sim}250nm$ in diameter), synthesized by emulsion copolymerization of DEAEMA, which also exhibit reversible swelling properties in water by adjusting the pH.

  • PDF

pH Response Pathways in Fungi: Adapting to Host-derived and Environmental Signals

  • Selvig, Kyla;Alspaugh, J. Andrew
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.249-256
    • /
    • 2011
  • Microorganisms are significantly affected when the ambient pH of their environment changes. They must therefore be able to sense and respond to these changes in order to survive. Previous investigators have studied various fungal species to define conserved pH-responsive signaling pathways. One of these pathways, known as the Pal/Rim pathway, is activated in response to alkaline pH signals, ultimately targeting the PacC/Rim101 transcription factor. Although the central signaling components are conserved among divergent filamentous and yeast-like fungi, there is some degree of signaling specificity between fungal species. This specificity exists primarily in the downstream transcriptional targets of this pathway, likely allowing differential adaptation to species-specific environmental niches. In this review, the role of the Pal/Rim pathway in fungal pH response is discussed. Also highlighted are functional differences present in this pathway among human fungal pathogens, differences that allow these specialized microorganisms to survive in the various micro-environments of the infected human host.

Synthesis and Characterization of pH-sensitive and Self-oscillating IPN Hydrogel in a pH Oscillator (pH 진동계 안에서 pH 감응성 자기진동 IPN 하이드로젤의 합성과 분석)

  • Wang, Liping;Ren, Jie;Zhang, Xiaoyan;Yang, Xiaoci;Yang, Wu
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.359-364
    • /
    • 2015
  • A self-oscillating interpenetrating polymer network (IPN) poly(acrylic acid)/poly(ethylene glycol) (PAA/PEG) hydrogel was prepared by using radical polymerization with a two-step method. The IPN hydrogel was characterized by FTIR spectroscopy and morphological analysis. The results indicated that the chains of PEG and PAA twined to form porous structure which is beneficial to water molecules entering inside of the hydrogel. In addition, the pH-responsive behavior, salt sensitivity, swelling/de-swelling oscillatory behaviors and self-oscillation in a closed pH oscillator were also studied. The results showed that the prepared hydrogel exhibited pH-sensitivity, good swelling/de-swelling reversibility and excellent salt sensitivity. The self-oscillating behavior of swelling/de-swelling for the prepared hydrogel was caused by pH alteration coupled with the external media. This study may create a new possibility as biomaterial including new self-walking actuators and other related devices.

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

Anti-Melanogenic Effect of Dendropanax Morbiferus and Its Active Components via Protein Kinas e A/Cyclic Adenos ine Monophosphate-Responsive Binding Protein-and p38 Mitogen-Activated Protein Kinase-Mediated Microphthalmia-Associated Transcription Factor Downregulation

  • Bohyun Yun;Ji Soo Kim;Jung Up Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.104-104
    • /
    • 2022
  • Dendropanax morbiferus H. Lev has been reported to have some pharmacologic activities and also interested in functional cosmetics. We found that the water extract of D. morbiferus leaves significantly inhibited tyrosinase activity and melanin formation in α-melanocyte stimulating hormone (MSH)-induced B16-F10 cells. D. morbiferus reduced melanogenesis-related protein levels, such as microphthalmia? associated transcription factor (MITF), TRP-1, and TRP-2, without any cytotoxicity. Two active ingredients of D. morbiferus, (10E)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (DMW-1) and (10E)-(?)-10,17-octadecadiene-12,14-diyne-1,9,16-triol (DMW-2) were identified by testing the anti-melanogenic effects and then by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. DMW-1 and DMW-2 significantly inhibited melanogenesis by the suppression of protein kinase A (PKA)/cyclic AMP (cAMP)-responsive binding protein (CREB) and p38 MAPK phosphorylation. DMW-1 showed a better inhibitory effect than DMW-2 in α-MSH-induced B16-F10 cells. D. morbiferus and its active component DMW-1 inhibited melanogenesis through the downregulation of cAMP, p-PKA/CREB, p-p38, MITF, TRP-1, TRP-2, and tyrosinase. These results indicate that D. morbiferus and DMW-1 may be useful ingredients for cosmetics and therapeutic agents for skin hyperpigmentation disorders.

  • PDF

Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer

  • Choo, Hyunwook;Choi, Youngmin;Kim, Young-Uk;Lee, Woojin;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Polyacrylamide (PAM) possesses high water absorption capacity and a unique pH-dependent behavior that confer large potential to enhance the engineering performance of clays. In this study, calcium bentonite was treated with a nonionic PAM. Flexible-wall permeability test and the consolidation test were performed at different pH values to evaluate the effects of PAM treatment on the hydraulic and consolidation properties. Test results demonstrate that index properties are affected by the adsorbed PAM on clay surface: a decrease in specific gravity, a decrease in net zeta potential, and an increase in liquid limit are observed due to the PAM treatment. At a given pH, the compressibility of the treated clay is greater than that of the untreated clay. However, the compression indices of untreated and treated clays can be expressed as a single function of the initial void ratio, regardless of pH. Hydraulic conductivity is reduced by PAM treatment about 5 times at both neutral and alkaline pH conditions under similar void ratios, because of the reduction in size of the water flow channel by PAM expansion. However, at acidic pH, the hydraulic conductivity of the treated clay is slightly higher than the untreated clay. This reflects that the treated bentonite with PAM can be beneficially used in barrier system for highly alkaline residues.

Photo-responsive Smart Polymer Materials (광 응답형 스마트 고분자 소재)

  • Yu, Jong-Su;Lee, Seong-Yun;Na, Hee-Yeong;Ahn, Tae-Jung;Kim, Hyun-Kyoung
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.282-291
    • /
    • 2012
  • Control of shape/volume, mechanical, optical, electrical, and chemical switching of materials by external stimuli such as light, temperature, pH, electric field, and pressure has attracted great attention. Among these materials, photo-responsive materials containing photochromic compounds such as azobenzene, spiropyran, and cinnamic acid groups have been the subject of intense interest in recent years. In this review, we describe the recent progress in the area of azobenzene containing polymer materials that can convert light energy into mechanical energy directly. Especially we focus our attention on light-driven actuators such as artificial muscle, motor, and valve. We summarize the photomechanical effects in liquid crystal elastomer, amorphous polymer, monolayer, and supramolecules containing azobenzene, respectively.

pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels (글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동)

  • Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.299-304
    • /
    • 2005
  • There have been many efforts to use anionic hydrogels as oral protein delivery carriers due to their pH-responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) [P(MAA-co-MEG)] hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation $M_t/M_{\infty}=kt^n$ was used to calculate the exponent, n, describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in the swelling medium of pH 7.0 that was higher than the $pK_a$ of the gels. Experimental results of time-dependent swelling behavior of the gels were analyzed with several mathematical models. Using ATR-FTIR spectroscopy, the effect of ionization of the carboxylic acid groups in the polymer networks on the water transport mechanism was investigated.

Spectral Properties of a pH Responsive Water Soluble Spironaphthoxazine and Its Multi-Switching Property

  • Bae, Jin-Seok;Kim, Sung-Hoon
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • A water soluble spironaphthoxazine (SPO) was synthesized, and its spectral properties were determined. Under UV irradiation, colorless SPO shows intensive blue color while the intensity of its initial fluorescence decreased. In addition, SPO also exhibited high sensitivity to pH stimuli both in colorimetry and fluorometry distinguishing from the spectral appearance observed under UV irradiation. Further, integrating these two optical characteristics a three-state switching system can be established, and all interconversions can be observed by naked-eye.

Nrf2 Knockout Mice that Lack Control of Drug Metabolizing and Antioxidant Enzyme Genes - Animals Highly Sensitive to Xenobiotic Toxicity

  • Enomoto, Akiko;Itoh, Ken;Harada, Takanori;Yamamoto, Masayuki
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.299-304
    • /
    • 2001
  • Xenobiotics and their reactive intermediates bind to cellular macromolecules and/or generate oxidative stress. which provoke deleterious effects on the cell function. Induction of xenobiotic-biotrans-forming enzymes and antioxidant molecules is an important defense mechanism against such insults. A group of genes involved in the defense mechanism. e.g. genes encoding glutathione S-transferases. NAD(P)H: quinone oxidoreductase, UDP-glucuronosyltransferase (UDP-GT) and ${\gamma}$-glutamylcysteine synthetase (GGCS). have a common regulatory sequence, Antioxidant or Electrophile Responsive Element (ARE/EpRE). Recently. Nrf2. discovered as a homologue of erythroid transcription factor p45 NF-E2, was shown to bind ARE/EpRE and induce the expression of these defense genes. Mice that lack Nrf2 show low basal levels of expression and/or impaired induction of these genes. which makes the animals highly sensitive to xenobiotic toxicity. Indeed. we show here that nrf2-deficient mice had a higher mortality than did the wild-type mice when exposed to acetaminophen (APAP). Detailed analyses of APAP hepatotoxicity in the nrf2 knockout mice indicate that a large amount of reactive APAP metabolites was generated in the livers due to the impaired basal expression of two detoxifying enzyme genes, UDP-GT (Ugt1a6) and GGCS. while the cytochrome P450 content was unchanged. Thus. the studies using the nrf2 knockout mice clearly demonstrate significance of the expression of Nrf2-regulated enzymes in protection against xenobiotic toxicity.

  • PDF