• Title/Summary/Keyword: pH stability

Search Result 2,403, Processing Time 0.026 seconds

Studies on Heat Stability of Egg Albumen Gel 1. Effects of Heating Time and Temperature, PH and NaCl Concentration on Heat Stability of Egg Albumen Gel (난백겔의 열안정성에 관한 연구 1, 가열온도와 시간, pH 및 NaCl농도가 난백겔의 열안정성에 미치는 영향)

  • 유익종;김창한;한석현;송계원
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • This study was undertaken to find out the effect of heating time and temperature, pH and NaCl concentration on the heat stability of egg albumen gel during heat treatment. With the transient decrease at 110-$130^{\circ}C$, hardness of heat-set albumen gel was increased as the heating temperature increased. The cohesiveness showed similar trend as well. The lightness was decreased while the yellowness was increased as the heating time and temperature increased. Heat-set albumen gel showed maximum hardness at pH 4.5-5.0 and pH 9.0 High heat treatment($120^{\circ}C$, 30min) showed higher hardness at alkaline range compared to low heat treatment($96^{\circ}C$, 30min.). Color of the albumen gel was relatively dark at acidic range and bright at alkaline range. High heat treatment caused darker albumen gel at alkaline range and brighter albumen gel at acidic range. The addition of NaCl increased hardness and cohesiveness of the albumen gel and improved the lightness after high heat treatment regardless of NaCl concentration.

  • PDF

Stability Determination of the Various Cosmetic Formulations containing Glycolic Acid

  • Yeo, Hye-yeon;Kim, Jeong-hee
    • Journal of Fashion Business
    • /
    • v.22 no.3
    • /
    • pp.30-38
    • /
    • 2018
  • Glycolic acid(GA) is well known the most effective cosmetic ingredient on the epidermal remodeling, accelerated desquamation and inhibitory effect on melanin synthesis. The various cosmetic formulations containing GA have not been reported in terms of stability. This study was to investigate the stability of three formulations(gel, cream, and ointment). The stability of obtained formulations was tested chemical and physical characteristics including the composition stability, hot-cool cycling, the variation of pH and viscosity, and the observation of color and odor. The experimental results showed that the gel and cream containing 5% GA, both formulations have proper stability in the centrifugal test, hot-cool cycling test, viscosity, pH stability and the observation of color and odor. On the other hand, the 5% GA ointment did not have stability. We concluded that the formulations of gel and cream are more suitable than ointment to use GA ingredient for developing cosmetic in terms of stability.

The effects of PPARβ/δ overexpression on PGC-1α mRNA and protein stability after accute endurance exercise in mice skeletal muscle (생쥐의 골격근에 PPARβ/δ 과발현이 1회 지구성 운동 후 안정시 PGC-1α mRNA와 단백질 안정성에 미치는 영향)

  • Koh, Jin-Ho;Jung, Su Ryun;Kim, Ki-Jin
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.4
    • /
    • pp.507-516
    • /
    • 2016
  • The purpose of this study is to identify the effects of PPARβ/δ over-expression on PGC-1α mRNA and protein stability after single bout of swimming exercise in mice skeletal muscle. Empty vector (EV) or PPARβ/δ was over-expressed in tibialis anterior(TA) using electroporation(EPO) technique to compare with non-treatment muscle(control; Con). TA muscles were dissected at 0h, 24h or 54h after termination of exercise. PGC-1α mRNA in Con, EV and PPARβ/δ over-expressed muscles were increased 6.8 fold (p<.001), 6.2 fold(p<.001) and 7.1 fold(p<.001), respectively, than sedentary(Sed) group at 0h after exercise and then reverted to Sed group levels at 24h and 54h after termination of exercise. PGC-1α and PGC-1α ubiquitination in EV treated muscles were increased 2.2 fold and 1.74 fold, respectively, than Sed group at 24h after termination of exercise, and then reverted to Sed group levels at 54h after termination of exercise. PGC-1α in PPARβ/δ over-expressed muscles at 24h and 54h after termination of exercise were increased 2.5 fold and 2.2 fold, respectively, than Sed group, but PGC-1α ubiquitination was not increased at 24h and 54h after termination of exercise. Our results indicate that PPARβ/δ over-expression does not increase PGC-1α mRNA stability, but increase PGC-1α protein stability through post-translation mechanism after termination of exercise.

Studies on Stability of distilled Herbal medicine (한약증류액의 안정성에 관한 연구)

  • Joo, Hye-Jeong;Lee, Han-Goo
    • Korean Journal of Oriental Medicine
    • /
    • v.1 no.1
    • /
    • pp.441-459
    • /
    • 1995
  • To study stability of distilled herbal medicine, we chose changes in UV spectrum, pH, conductivity, and HPLC chromatogram. Aconiti Lateralis preparata Radix and Scutellariae Radix were selected and studied. There ws no consistancy in UV spectrums of preparatons and in duration. The changes in pH and conductivity were not correlated to those in UV spectrums. HPLC chromatograms were also compared each other depending on the preparations. One interesting peak of distilled Aconiti solution was appeared at 40 min retention time which was not identified yet. Ingeneral, UV spectrum, pH, conductivity measurements are pretty poor tool to study stability of herbal medicine although HPLC analysis should be studied further.

  • PDF

Studies on the Zr-Pyrithione Complex (지르코늄-피리치온 착물에 관한 연구)

  • Kwon, Chung-Moo;Rhee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.145-152
    • /
    • 1990
  • Zirconium pyrithione complex was prepared by reaction of sodium-pyrithione solution and zirconyl chloride solution. The physico-chemical properties of the complex was examined by means of IR, XRD, DSC and NMR. And the stability of Zr-complex was investigated on the basis of accelerated stability analysis under conditions of temp. elevation, UV radiation and pH dependence. The result indicates that the ratio of the ligand to metal in Zr-pyrithione complex was determined 4:1, and its stability constant was $4.643{\times}10^4$. The rate order of decomposition of the complex was apparent first-order reaction of which rate constant and the decomposition rate was not only accelerated by effect of heat and UV radiation but was catalyzed by specific acid-base catalysis considered the pH dependence for the hydrolysis of the complex and the suspension was most stable over the range pH 4-8 indicating that solvent catalysis is the primary made of reaction in this region.

  • PDF

Optimization of Removal Rates with Guaranteed Dispersion Stability in Copper CMP Slurry

  • Kim Tae-Gun;Kim Nam-Hoon;Kim Sang-Yong;Chang Eui-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.233-236
    • /
    • 2004
  • Copper metallization has been used in high-speed logic ULSI devices instead of the conventional aluminum alloy metallization. One of the key issues in copper CMP is the development of slurries that can provide high removal rates. In this study, the effects of slurry chemicals and pH for slurry dispersion stability on Cu CMP process characteristics have been performed. The experiments of copper slurries containing each different alumina and colloidal silica particles were evaluated for their selectivity of copper to TaN and $SiO_{2}$ films. Furthermore, the stability of copper slurries and pH are important parameters in many industries due to problems that can arise as a result of particle settling. So, it was also observed about several variables with various pH.

Changes of Emulsifying and Foaming Properties of Soy Protein with an Calcium , HCI and Microbial IJ-3 Strain Enzyme

  • Park, Yang-Won;Kim, Young-Jeon
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.53-58
    • /
    • 1996
  • The characterstics of the soy protein curd(eczyme-, HCI- and Ca-surd) were shown by scanning electron micrographs and gel electrophoreis. The emulsion stability of enzyme-curd showed high value in the range of pH 2~10and wide range of temperature(20~8$0^{\circ}C$). While at the isoelectric point(pH5.0), the emulsion stability of the HCI-and Ca-curd was decreased remarkably, and the emulsion stability of temperature was reduced quickly to the 60% and 40% at the 4$0^{\circ}C$. The foam stability of enzyme-curd was slightly higher than that HCI-and CA-curd in all ranges of pH and temperature. The feature of SEM of enzyme-cured produced degradation products faster than that of the HCI- and Ca-curd.

  • PDF

Stability of Minoxidil in Aqueous Solution (수용액중 미녹시딜의 안정성)

  • 김길수
    • YAKHAK HOEJI
    • /
    • v.30 no.5
    • /
    • pp.228-231
    • /
    • 1986
  • The effect of temperature and pH on the degrdation of minoxidil in the aqueous solution was investigated and the stability of pharmaceutical preparation for solution was also studied. The degradation of minoxidil in the aqueous solution was first order type reaction and the rate constant at $20^{\circ}C$ in pH 7.0 phosphate buffer solution was 9.464${\times]10^{-3} day^{-1}$ and calculated activation energy was 11.7 kcal/mol. The degradation of minoxidil was acid-base catalytic reaction and the most stable range of pH was about 5.0. The liquid pharmaceutical preparation was very stable in 3 months.

  • PDF

Evaluation of the Stability of Oxidation-Reduced Potential (ORP) Using the Filter of the Alkaline Water (알칼리 환원수 필터의 산화환원전위 안정화 평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.129-135
    • /
    • 2016
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. Evaluation of the stability of oxidation-reduced potential (ORP) using the filter of the alkaline water. This study utilizes the three filter of activated carbon, UF, carbon block in alkaline reduced water equipment. Passing the water to the filter is evaluated that the OPR values are stability in accordance with the change of the volume in the bucket. Alkaline reduced water equipment is a system that has the function of making the water reduction. This system is the values of the human body beneficial minerals and ORP are made in the functional water has a very low value than general water. Which has passed through the filter the water in the water negative ions and positive ions through the electrolytic. After electrolysis, the cathode side by water, including $Ca^+$, $K^+$, $Mg^+$, $Na^+$ water gets Alkaline Reduced Water containing the minerals beneficial to the human body. A positive electrode side is made of the organic materials that have an anion such as chlorine (Cl), phosphorus (P), sulfur(S). This experiment uses the Alkaline Reduced Water to adjust the magnitude of the voltage of the electrolysis in the Alkaline Reduced Water. That is 1st step(pH8) 2nd step (pH8.5) 3th step (pH9), 4th step (pH9.5) in the Alkaline Reduced Water and -1st step (pH6.0), -2nd step (pH5.0) used as the acidic oxidation water. When the water passes through the three filter in this system was evaluated whether the ORP values are changed and stabilized. When about 100 liters of water passing through the filter was confirmed that the ORP values are stability and evaluation.

Comparison of enzyme activities of the native and N-terminal 6xHis-tagged Fe supreoxide dismutase from Streptomyces subrutilus P5 (Streptomyces subrutilus P5의 천연 Fe superoxide dismutase와 N-말단 6xHis-태그가 결합된 Fe superoxide dismutase의 활성비교)

  • Park, Joong-ho;Kim, Jae-heon
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.230-235
    • /
    • 2016
  • This study was carried out to analyze the differences in enzyme activity and stability between the native Fe superoxide dismutase (FeSOD) and the 6xHis-tagged superoxide dismutase (6xHis-FeSOD) of Streptomyces subrutilus P5. The optimum pHs for both native FeSOD and 6xHis-FeSOD were 7, while the pH range of the activity was narrower for the 6xHis-FeSOD. The native FeSOD was stable at pH 4-9, but the 6xHis-FeSOD lost its stability at pH > 9. The temperatures of the optimum activities were same for both types of enzymes. However, the heat stability of the 6xHis-FeSOD was clearly decreased; even at $20^{\circ}C$ the enzyme lost the activity after 360 min. In contrast, the native FeSOD was stable after 720 min at below $40^{\circ}C$. $H_2O_2$ inhibition was occurred already at 0.5 mM for the 6xHis-tagged enzyme. Therefore, from the results that the 6xHis-FeSOD retained the enzyme activity at pH 6-7 and $20-40^{\circ}C$, it can be assumed that the protein structure became destabilized under different storage conditions and sensitive to the enzyme inhibitor.