• Title/Summary/Keyword: pH neutralization

Search Result 228, Processing Time 0.03 seconds

Aqeous Neutralizer as Reactive Solvents for Odorous Ammonia Removal

  • Park, Young-G.
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.119-124
    • /
    • 2008
  • Ammonia is an inorganic compound that may cause severe odor problem. In this study the effectiveness of applying natural neutralizer to destroy and remove the odor-causing compound from gas streams was studied. Experimental result evaluated with a bench-scale apparatus via the neutralization of gas phase. This indicates that the natural neutralization depends on the gas concentration, gas residence time, temperature and pH. Removal efficiency of ammonia from gas stream was achieved by 95% using theconvection in the packed bed. This study proved the chemical neutralization technology was effective for controlling inorganic odor-causing compound.

Characterization and Two-Phase Neutralization of Acid Mine Drainage (두 단계 중화적정에 의한 산성 광산 유출수 중의 중금속 제거)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.73-78
    • /
    • 1999
  • Acid mine drainage (AMD) results from sulfuric acid produced by the oxidation of pyrite, and contains large amounts of toxic elements. In the neutralization of AMD, iron and aluminum hydroxides are the major precipitates and those two can be separated with two-phase neutralization. In this study, removal of toxic elements by the two phases of neutralization was investigated using an AMD collected from the abandoned antimony mine in Gachang, Taegu. Contents of As, Cd, Cu, Mn, Pb and Zn in the AMD were higher than the criteria of river water quality or permissible waste water discharge. In the first phase, the AMD was neutralized to several % (25, 50, 75, 100, and 125) of $Fe(OH)_3$ equivalence point with solid $Ca(OH)_2$. In the second phase, the supernatant of the first phase neutralization was titrated to pH 7.5. After neutralization of the AMD to 100% of the $Fe(OH)_3$, equivalence point, most of Fe and Pb were removed but levels of As, Cd, Cu, Ni, Mn, and Zn were not reduced in the supernatant solution. In the second phase neutralization, levels of those toxic elements in the supernatants dropped below the wastewater discharge or river water quality criteria. This result suggests that the precipitate formed in the first phase of the neutralization process may be disposed without any special cares. Thus the two-phase neutralization scheme can reduce the cost of disposing precipitates containing toxic metals in comparison with the monophase neutralization scheme.

  • PDF

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

Adaptive Nonlinear Constrained Predictive Control of pH Neutralization in Fed-batch Bio-reactor

  • Zhe, Xu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.90-95
    • /
    • 2003
  • In this paper, an Adaptive Nonlinear Constrained Model Predictive Control (ANCMPC) is presented for a pH control in a fed-batch bio-reactor. The pH model is represented with Hammerstein Model. The static nonlinear part of Hammerstein model is described with the static pH model, and the dynamic linear part of the Hammerstein model is described with the CARIMA model. The parameters of the CARIMA model is estimated on-line with the input and output measurements of the system using a recursive least squares type of identi�cation algorithm. The e�ectiveness of the proposed controller is shown through simulations.

  • PDF

Comparison of Titration Curve Estimation Methods for pH Neutralization Processes

  • Park, Ho-Cheol;Lee, Jie-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.124.1-124
    • /
    • 2001
  • Control of pH neutralization process plays a very important role in some chemical process. Because of their high nonlinearity, frequent disturbance, and time-varying characteristics, it is difficult to control and estimate pH processes. For the adaptive control of pH processes, a lot of researchers have made an efforts in the modeling and control of pH processes. It is very difficult to obtain information of influent stream such as concentrations and dissociation constants and the titration curve equation is very complex. Therefore, several simple models, which hate small number of unknown parameters and estimate the titration curve, have been available, These models were considered here and were transformed into forms that can applied the linear least square method.

  • PDF

A Study on the pH Reduction of Controlled Low Strength Material with Coal Ash (석탄회를 활용한 CLSM의 pH 저감에 관한 연구)

  • Kim, Youngil;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.39-45
    • /
    • 2010
  • Controlled low strength material(CLSM) is produced by mixing portland cement, fine aggregates, water and chemical admixtures. Sand is the most commonly used as the fine aggregates in the conventional CLSM. It is getting more and more difficult to obtain sand in Korea so it is required that the alternative materials be developed as the replacement of sand. Since the engineering characteristics of coal ash are similar to the sand, it becomes necessary to examine the application of the coal ash as the alternative material for CLSM and as the environment-friendly material. When the results meet the optimum pH level that plants can live, it can be expanded the scale of application of the study on the plant as the important field. This study was subjected to present the method to reduce the pH range of CLSM to a suitable condition that plants can survive. To verify this method, the care of neutralization was conducted by immersing the specimen to Ammonium monohydrogen phosphate. Before curing and neutralization, the maximum pH of developmental CLSM is approximately 11. However, the pH value of developmental CLSM has under 9.5 after peaceful curing and neutralization management.

Biogas Treatment from Wastewater Treatment Plant by Micro-bubble Generation System with Neutralization Chemicals (중화약품과 마이크로버블 장치를 이용한 폐수처리장 바이오가스 처리)

  • Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • DIWS system was introduced to remove hydrogen sulfide from the biogas of wastewater treatment plant. In the case of using water into the DIWS system more than 5,000mg/L of hydrogen sulfide, 25% of H2S removal efficiency was shown and required such further treatment process as incineration which was obtained more than 98%. When the inflow of hydrogen sulfide was 5,000mg/L, CH4 and CO2 were effectively discharged and the reduction was 8.7% and 28.6%, respectively. When such neutralization chemicals as Na2CO3 and NaOH were introduced into the DIWS system, H2S was removed more than 97.2% keeping pH in the range of 11.2 to 11.5.

A Comparative Study for Leaching Characteristics of Specified By-Products due to Changes in Acid Neutralization Capacities (지정부산물의 산중화능력변화에 따른 용출특성 비교연구)

  • 이현경;박주양
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.206-209
    • /
    • 2001
  • This study presents the leaching characterization of heavy metals according to changes of pH by ANC test on slag produced in electric arc furnace, bottom ash produced in coal-fired plants and their recycling products. Availability test was performed to assess the fraction of the total concentration that under worst environmental conditions could become available for leaching. TCLP, KLT(Korea Leaching Test) and KLTS(Korea Leaching Test of Soil contamination) were carried out to compare the leaching capacity and to estimate the adequacy of regulatory leaching test. Results from regulatory leaching tests could be misleading because the variable ANC of wastes can lead to very different final leachate pHs. The final pH of the regulatory test is not the ambient pH in the disposal environment, the actual solubilities of contaminants in the field may be entirely different from those predicted by these regulatory tests. Leaching behaviour of by-products was changed by recycling processes, therefore acid neutralization capacity and availability of new products, not leaching concentration by one batch regulatory test, are necessary to determine the method of recycling.

  • PDF

Neutralization and Buffer Effect of Crab Shell Powder in Kimchi (김치에 첨가한 게껍질 분말의 중화 및 완충효과)

  • 김순동;김미향;김미경;김일두
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.569-574
    • /
    • 1997
  • In order to study the effect of ozone treated-CSP(crab shell powders) addition in kimchi on shelf-life, sensory quality, neutralization and buffer action during fermentation at 10"C were investigated. The edible periods of kimchi containing 2% CSP by investigating pH and acidity were prolonged by 40 and 33 days, respectively. CSP in kimchi showed strong neutralization action for 0~25 days and buffer action after 25 days during fermentation. The slow and complete neutralization action of 3% CSP in 2% lactic acid solution was observed. Amounts of lactic acid, which 2% CSP in kimchi was capable of absorption by buffer action during fermentation, was 0.07~0.3%. The studies of sensory quality improvement for CSP added kimchi was demanded in the furture.ture.

  • PDF